Search results
Results from the WOW.Com Content Network
Structure of a typical L-alpha-amino acid in the "neutral" form. Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. [1] Although over 500 amino acids exist in nature, by far the most important are the 22 α-amino acids incorporated into proteins. [2] Only these 22 appear in the genetic code of life ...
Protein structure is the three-dimensional arrangement of atoms in an amino acid-chain molecule. Proteins are polymers – specifically polypeptides – formed from sequences of amino acids, which are the monomers of the polymer. A single amino acid monomer may also be called a residue, which indicates a
Epoxide monomers may be cross linked with themselves, or with the addition of a co-reactant, to form epoxy; BPA is the monomer precursor for polycarbonate; Terephthalic acid is a comonomer that, with ethylene glycol, forms polyethylene terephthalate. Dimethylsilicon dichloride is a monomer that, upon hydrolysis, gives polydimethylsiloxane.
Protein primary structure is the linear sequence of amino acids in a peptide or protein. [1] By convention, the primary structure of a protein is reported starting from the amino -terminal (N) end to the carboxyl -terminal (C) end.
The amino acids in a polypeptide chain are linked by peptide bonds between amino and carboxyl group. An individual amino acid in a chain is called a residue, and the linked series of carbon, nitrogen, and oxygen atoms are known as the main chain or protein backbone.
Indeed, they can be viewed as a string of beads, with each bead representing a single nucleotide or amino acid monomer linked together through covalent chemical bonds into a very long chain. In most cases, the monomers within the chain have a strong propensity to interact with other amino acids or nucleotides.
It is also the most extreme type of local structure, and it is the local structure that is most easily predicted from a sequence of amino acids. The alpha helix has a right-handed helix conformation in which every backbone N−H group hydrogen bonds to the backbone C=O group of the amino acid that is four residues earlier in the protein sequence.
The units were joined by condensation of the carboxylic acid group –C(=O)OH of one monomer with the amine group H 2 N− of the next one. Some biologically important oligomers are macromolecules like proteins or nucleic acids; for instance, hemoglobin is a protein tetramer. An oligomer of amino acids is called an oligopeptide or just a peptide.