Search results
Results from the WOW.Com Content Network
Shape Figure ¯ ¯ Area rectangle area: General triangular area + + [1] Isosceles-triangular area: Right-triangular area: Circular area: Quarter-circular area [2]: Semicircular area [3]: Circular sector
A page from Archimedes' Measurement of a Circle. Measurement of a Circle or Dimension of the Circle (Greek: Κύκλου μέτρησις, Kuklou metrēsis) [1] is a treatise that consists of three propositions, probably made by Archimedes, ca. 250 BCE. [2] [3] The treatise is only a fraction of what was a longer work. [4] [5]
As an example, the area is one quarter the circle when θ ~ 2.31 radians (132.3°) corresponding to a height of ~59.6% and a chord length of ~183% of the radius. [ clarification needed ] Etc.
Measurement of tree circumference, the tape calibrated to show diameter, at breast height. The tape assumes a circular shape. The perimeter of a circle of radius R is .Given the perimeter of a non-circular object P, one can calculate its perimeter-equivalent radius by setting
Following Archimedes' argument in The Measurement of a Circle (c. 260 BCE), compare the area enclosed by a circle to a right triangle whose base has the length of the circle's circumference and whose height equals the circle's radius. If the area of the circle is not equal to that of the triangle, then it must be either greater or less.
This gives the expected results of 4 π steradians for the 3D sphere bounded by a surface of area 4πr 2 and 2 π radians for the 2D circle bounded by a circumference of length 2πr. It also gives the slightly less obvious 2 for the 1D case, in which the origin-centered 1D "sphere" is the interval [− r , r ] and this is bounded by two ...
For example, consider the formulas for the area enclosed by a circle in two dimensions (=) and the volume enclosed by a sphere in three dimensions (=). One might guess that the volume enclosed by the sphere in four-dimensional space is a rational multiple of π r 4 {\displaystyle \pi r^{4}} , but the correct volume is π 2 2 r 4 {\displaystyle ...
The surface-area-to-volume ratio has physical dimension inverse length (L −1) and is therefore expressed in units of inverse metre (m-1) or its prefixed unit multiples and submultiples. As an example, a cube with sides of length 1 cm will have a surface area of 6 cm 2 and a volume of 1 cm 3. The surface to volume ratio for this cube is thus