Search results
Results from the WOW.Com Content Network
An odds ratio (OR) is a statistic that quantifies the strength of the association between two events, A and B. The odds ratio is defined as the ratio of the odds of event A taking place in the presence of B, and the odds of A in the absence of B. Due to symmetry, odds ratio reciprocally calculates the ratio of the odds of B occurring in the presence of A, and the odds of B in the absence of A.
The (latter mentioned) effect of overestimation can be compensated for by converting risks to odds, and relative risks to odds ratios. However, this does not compensate for (former mentioned) effect of any difference between pre-test probability of an individual and the prevalence in the reference group.
In practice the odds ratio is commonly used for case-control studies, as the relative risk cannot be estimated. [1] In fact, the odds ratio has much more common use in statistics, since logistic regression, often associated with clinical trials, works with the log of the odds ratio, not relative risk. Because the (natural log of the) odds of a ...
The rationale for the diagnostic odds ratio is that it is a single indicator of test performance (like accuracy and Youden's J statistic) but which is independent of prevalence (unlike accuracy) and is presented as an odds ratio, which is familiar to medical practitioners.
The positive predictive value (PPV), or precision, is defined as = + = where a "true positive" is the event that the test makes a positive prediction, and the subject has a positive result under the gold standard, and a "false positive" is the event that the test makes a positive prediction, and the subject has a negative result under the gold standard.
The simplest measure of association for a 2 × 2 contingency table is the odds ratio. Given two events, A and B, the odds ratio is defined as the ratio of the odds of A in the presence of B and the odds of A in the absence of B, or equivalently (due to symmetry), the ratio of the odds of B in the presence of A and the odds of B in the absence of A.
and = / / = While the prevalence is only 9% (9/100), the odds ratio (OR) is equal to 11.3 and the relative risk (RR) is equal to 7.2. Despite fulfilling the rare disease assumption overall, the OR and RR can hardly be considered to be approximately the same. However, the prevalence in the exposed group is 40%, which means is not sufficiently small
Now, if the prevalence of this disease is 9.09%, and if we take that as the prior probability, then the prior odds is about 1:10. So after receiving a positive test result, the posterior odds of having the disease becomes 1:1, which means that the posterior probability of having the disease is 50%.