Search results
Results from the WOW.Com Content Network
The wider applicability and increased robustness of non-parametric tests comes at a cost: in cases where a parametric test's assumptions are met, non-parametric tests have less statistical power. In other words, a larger sample size can be required to draw conclusions with the same degree of confidence.
Parametric tests assume that the data follow a particular distribution, typically a normal distribution, while non-parametric tests make no assumptions about the distribution. [7] Non-parametric tests have the advantage of being more resistant to misbehaviour of the data, such as outliers . [ 7 ]
Cochran's test is a non-parametric statistical test to verify whether k treatments have identical effects in the analysis of two-way randomized block designs where the response variable is binary. [1] [2] [3] It is named after William Gemmell Cochran.
The ANOVA tests the null hypothesis, which states that samples in all groups are drawn from populations with the same mean values. To do this, two estimates are made of the population variance. These estimates rely on various assumptions . The ANOVA produces an F-statistic, the ratio of the variance calculated among the means to the variance ...
Permutation tests are a subset of non-parametric statistics. Assuming that our experimental data come from data measured from two treatment groups, the method simply generates the distribution of mean differences under the assumption that the two groups are not distinct in terms of the measured variable.
The Wilcoxon signed-rank test is a nonparametric test of nonindependent data from only two groups. The Skillings–Mack test is a general Friedman-type statistic that can be used in almost any block design with an arbitrary missing-data structure. The Wittkowski test is a general Friedman-Type statistics similar to Skillings-Mack test. When the ...
Nonparametric statistics is a branch of statistics concerned with non-parametric statistical models and non-parametric statistical tests. Non-parametric statistics are statistics that do not estimate population parameters. In contrast, see parametric statistics. Nonparametric models differ from parametric models in that the model structure is ...
Illustration of the Kolmogorov–Smirnov statistic. The red line is a model CDF, the blue line is an empirical CDF, and the black arrow is the KS statistic.. Kolmogorov–Smirnov test (K–S test or KS test) is a nonparametric test of the equality of continuous (or discontinuous, see Section 2.2), one-dimensional probability distributions that can be used to test whether a sample came from a ...