enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Doppler effect - Wikipedia

    en.wikipedia.org/wiki/Doppler_effect

    The Doppler effect (also Doppler shift) is the change in the frequency of a wave in relation to an observer who is moving relative to the source of the wave. [ 1 ] [ 2 ] [ 3 ] The Doppler effect is named after the physicist Christian Doppler , who described the phenomenon in 1842.

  3. Bondi k-calculus - Wikipedia

    en.wikipedia.org/wiki/Bondi_k-calculus

    In the k-calculus methodology, distances are measured using radar.An observer sends a radar pulse towards a target and receives an echo from it. The radar pulse (which travels at , the speed of light) travels a total distance, there and back, that is twice the distance to the target, and takes time , where and are times recorded by the observer's clock at transmission and reception of the ...

  4. List of relativistic equations - Wikipedia

    en.wikipedia.org/wiki/List_of_relativistic_equations

    Consider a long train, moving with velocity v with respect to the ground, and one observer on the train and one on the ground, standing next to a post. The observer on the train sees the front of the train pass the post, and then, some time t′ later, sees the end of the train pass the same post. He then calculates the train's length as follows:

  5. Relativistic Doppler effect - Wikipedia

    en.wikipedia.org/wiki/Relativistic_Doppler_effect

    The relativistic Doppler effect is the change in frequency, wavelength and amplitude [1] of light, caused by the relative motion of the source and the observer (as in the classical Doppler effect, first proposed by Christian Doppler in 1842 [2]), when taking into account effects described by the special theory of relativity.

  6. Relativistic aberration - Wikipedia

    en.wikipedia.org/wiki/Relativistic_aberration

    In this circumstance, the rays of light from the source which reach the observer are tilted towards the direction of the source's motion (relative to the observer). It is as if light emitted by a moving object is concentrated conically, towards its direction of motion; an effect called relativistic beaming. Also, light received by a moving ...

  7. Relativity of simultaneity - Wikipedia

    en.wikipedia.org/wiki/Relativity_of_simultaneity

    Assume that the first observer uses coordinates labeled t, x, y, and z, while the second observer uses coordinates labeled t′, x′, y′, and z′. Now suppose that the first observer sees the second observer moving in the x-direction at a velocity v. And suppose that the observers' coordinate axes are parallel and that they have the same ...

  8. Relativistic beaming - Wikipedia

    en.wikipedia.org/wiki/Relativistic_beaming

    Only a single jet is visible in M87. Two jets are visible in 3C 31.. In physics, relativistic beaming (also known as Doppler beaming, Doppler boosting, or the headlight effect) is the process by which relativistic effects modify the apparent luminosity of emitting matter that is moving at speeds close to the speed of light.

  9. Doppler radar - Wikipedia

    en.wikipedia.org/wiki/Doppler_radar

    The Doppler effect (or Doppler shift), named after Austrian physicist Christian Doppler who proposed it in 1842, is the difference between the observed frequency and the emitted frequency of a wave for an observer moving relative to the source of the waves. It is commonly heard when a vehicle sounding a siren approaches, passes and recedes from ...