enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Eulerian path - Wikipedia

    en.wikipedia.org/wiki/Eulerian_path

    In graph theory, an Eulerian trail (or Eulerian path) is a trail in a finite graph that visits every edge exactly once (allowing for revisiting vertices). Similarly, an Eulerian circuit or Eulerian cycle is an Eulerian trail that starts and ends on the same vertex .

  3. Euler diagram - Wikipedia

    en.wikipedia.org/wiki/Euler_diagram

    For example, connectedness of zones might be enforced, or concurrency of curves or multiple points might be banned, as might tangential intersection of curves. In the adjacent diagram, examples of small Venn diagrams are transformed into Euler diagrams by sequences of transformations; some of the intermediate diagrams have concurrency of curves.

  4. BEST theorem - Wikipedia

    en.wikipedia.org/wiki/BEST_theorem

    In 1736, Euler showed that G has an Eulerian circuit if and only if G is connected and the indegree is equal to outdegree at every vertex. In this case G is called Eulerian. We denote the indegree of a vertex v by deg(v). The BEST theorem states that the number ec(G) of Eulerian circuits in a connected Eulerian graph G is given by the formula

  5. Eulerian matroid - Wikipedia

    en.wikipedia.org/wiki/Eulerian_matroid

    For planar graphs, the properties of being Eulerian and bipartite are dual: a planar graph is Eulerian if and only if its dual graph is bipartite. As Welsh showed, this duality extends to binary matroids: a binary matroid is Eulerian if and only if its dual matroid is a bipartite matroid, a matroid in which every circuit has even cardinality.

  6. Cycle basis - Wikipedia

    en.wikipedia.org/wiki/Cycle_basis

    A spanning subgraph of a given graph G has the same set of vertices as G itself but, possibly, fewer edges. A graph G, or one of its subgraphs, is said to be Eulerian if each of its vertices has even degree (its number of incident edges). Every simple cycle in a graph is an Eulerian subgraph, but there may be others.

  7. Euler tour technique - Wikipedia

    en.wikipedia.org/wiki/Euler_tour_technique

    The Euler tour technique (ETT), named after Leonhard Euler, is a method in graph theory for representing trees. The tree is viewed as a directed graph that contains two directed edges for each edge in the tree. The tree can then be represented as a Eulerian circuit of the directed graph, known as the Euler tour representation (ETR) of the tree

  8. List of topics named after Leonhard Euler - Wikipedia

    en.wikipedia.org/wiki/List_of_topics_named_after...

    Eulerian circuit, Euler cycle or Eulerian path – a path through a graph that takes each edge once Eulerian graph has all its vertices spanned by an Eulerian path; Euler class; Euler diagram – popularly called "Venn diagrams", although some use this term only for a subclass of Euler diagrams. Euler tour technique

  9. Butterfly graph - Wikipedia

    en.wikipedia.org/wiki/Butterfly_graph

    In the mathematical field of graph theory, the butterfly graph (also called the bowtie graph and the hourglass graph) is a planar, undirected graph with 5 vertices and 6 edges. [ 1 ] [ 2 ] It can be constructed by joining 2 copies of the cycle graph C 3 with a common vertex and is therefore isomorphic to the friendship graph F 2 .