Search results
Results from the WOW.Com Content Network
The pitch of the alpha-helix (the vertical distance between consecutive turns of the helix) is 5.4 Å (0.54 nm), which is the product of 1.5 and 3.6. The most important thing is that the N-H group of one amino acid forms a hydrogen bond with the C=O group of the amino acid four residues earlier; this repeated i + 4 → i hydrogen bonding is the ...
In biochemistry, denaturation is a process in which proteins or nucleic acids lose folded structure present in their native state due to various factors, including application of some external stress or compound, such as a strong acid or base, a concentrated inorganic salt, an organic solvent (e.g., alcohol or chloroform), agitation and radiation, or heat. [3]
These methods were based on the helix- or sheet-forming propensities of individual amino acids, sometimes coupled with rules for estimating the free energy of forming secondary structure elements. The first widely used techniques to predict protein secondary structure from the amino acid sequence were the Chou–Fasman method [ 17 ] [ 18 ] [ 19 ...
The alpha helix spiral formation An anti-parallel beta pleated sheet displaying hydrogen bonding within the backbone Formation of a secondary structure is the first step in the folding process that a protein takes to assume its native structure.
The Rossmann fold is a tertiary fold found in proteins that bind nucleotides, such as enzyme cofactors FAD, NAD +, and NADP +.This fold is composed of alternating beta strands and alpha helical segments where the beta strands are hydrogen bonded to each other forming an extended beta sheet and the alpha helices surround both faces of the sheet to produce a three-layered sandwich.
All-β proteins are a class of structural domains in which the secondary structure is composed entirely of β-sheets, with the possible exception of a few isolated α-helices on the periphery. Common examples include the SH3 domain , the beta-propeller domain , the immunoglobulin fold and B3 DNA binding domain .
This exposes a single glucose residue joined to the glucose chain through an α-1,6 glycosidic linkage [10] Mechanism for cleaving of alpha-1,6 linkage. Amylo-α-1,6-glucosidase (EC 3.2.1.33), or glucosidase, cleaves the remaining alpha-1,6 linkage, producing glucose and a linear chain of glycogen. [10]
The TIM barrel (triose-phosphate isomerase), also known as an alpha/beta barrel, [1]: 252 is a conserved protein fold consisting of eight alpha helices (α-helices) and eight parallel beta strands (β-strands) that alternate along the peptide backbone. [2] The structure is named after triose-phosphate isomerase, a conserved metabolic enzyme. [3]