Search results
Results from the WOW.Com Content Network
In cryptography, the avalanche effect is the desirable property of cryptographic algorithms, typically block ciphers [1] and cryptographic hash functions, wherein if an input is changed slightly (for example, flipping a single bit), the output changes significantly (e.g., half the output bits flip).
BLAKE is a cryptographic hash function based on Daniel J. Bernstein's ChaCha stream cipher, but a permuted copy of the input block, XORed with round constants, is added before each ChaCha round. Like SHA-2, there are two variants differing in the word size. ChaCha operates on a 4×4 array of words.
A hash function that allows only certain table sizes or strings only up to a certain length, or cannot accept a seed (i.e. allow double hashing) is less useful than one that does. [citation needed] A hash function is applicable in a variety of situations. Particularly within cryptography, notable applications include: [8]
Most cryptographic hash functions are designed to take a string of any length as input and produce a fixed-length hash value. A cryptographic hash function must be able to withstand all known types of cryptanalytic attack. In theoretical cryptography, the security level of a cryptographic hash function has been defined using the following ...
hash HAS-160: 160 bits hash HAVAL: 128 to 256 bits hash JH: 224 to 512 bits hash LSH [19] 256 to 512 bits wide-pipe Merkle–Damgård construction: MD2: 128 bits hash MD4: 128 bits hash MD5: 128 bits Merkle–Damgård construction: MD6: up to 512 bits Merkle tree NLFSR (it is also a keyed hash function) RadioGatún: arbitrary ideal mangling ...
A common use of one-way compression functions is in the Merkle–Damgård construction inside cryptographic hash functions. Most widely used hash functions, including MD5, SHA-1 (which is deprecated [2]) and SHA-2 use this construction. A hash function must be able to process an arbitrary-length message into a fixed-length output.
Gimli is a 384-bit cryptographically secure pseudorandom permutation that can be used to construct a hash function or stream cipher by using it in a sponge construction. [2] One stated design goal is the ability to deliver high speeds on many different platforms from 8-bit AVR CPUs to 64-bit desktop CPUs while still maintaining high security.
Typically, a unique salt is randomly generated for each password. The salt and the password (or its version after key stretching) are concatenated and fed to a cryptographic hash function, and the output hash value is then stored with the salt in a database. The salt does not need to be encrypted, because knowing the salt would not help the ...