enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tensor - Wikipedia

    en.wikipedia.org/wiki/Tensor

    The tensors are classified according to their type (n, m), where n is the number of contravariant indices, m is the number of covariant indices, and n + m gives the total order of the tensor. For example, a bilinear form is the same thing as a (0, 2)-tensor; an inner product is an example of a (0, 2)-tensor, but not all (0, 2)-tensors are inner ...

  3. Category:Tensors - Wikipedia

    en.wikipedia.org/wiki/Category:Tensors

    In mathematics, a tensor is a certain kind of geometrical entity and array concept. It generalizes the concepts of scalar, vector and linear operator, in a way that is independent of any chosen frame of reference. For example, doing rotations over axis does not affect at all the properties of tensors, if a transformation law is followed.

  4. Tensor algebra - Wikipedia

    en.wikipedia.org/wiki/Tensor_algebra

    In mathematics, the tensor algebra of a vector space V, denoted T(V) or T • (V), is the algebra of tensors on V (of any rank) with multiplication being the tensor product.It is the free algebra on V, in the sense of being left adjoint to the forgetful functor from algebras to vector spaces: it is the "most general" algebra containing V, in the sense of the corresponding universal property ...

  5. Raising and lowering indices - Wikipedia

    en.wikipedia.org/wiki/Raising_and_lowering_indices

    A (0,1) tensor is a covector. A (0,2) tensor is a bilinear form. An example is the metric tensor . A (1,1) tensor is a linear map. An example is the delta, , which is the identity map, or a Lorentz transformation .

  6. Levi-Civita symbol - Wikipedia

    en.wikipedia.org/wiki/Levi-Civita_symbol

    A tensor whose components in an orthonormal basis are given by the Levi-Civita symbol (a tensor of covariant rank n) is sometimes called a permutation tensor. Under the ordinary transformation rules for tensors the Levi-Civita symbol is unchanged under pure rotations, consistent with that it is (by definition) the same in all coordinate systems ...

  7. Outer product - Wikipedia

    en.wikipedia.org/wiki/Outer_product

    The outer product of tensors is also referred to as their tensor product, and can be used to define the tensor algebra. The outer product contrasts with: The dot product (a special case of " inner product "), which takes a pair of coordinate vectors as input and produces a scalar

  8. Glossary of tensor theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_tensor_theory

    The earliest foundation of tensor theory – tensor index notation. [1] Order of a tensor The components of a tensor with respect to a basis is an indexed array. The order of a tensor is the number of indices needed. Some texts may refer to the tensor order using the term degree or rank. Rank of a tensor The rank of a tensor is the minimum ...

  9. Ricci calculus - Wikipedia

    en.wikipedia.org/wiki/Ricci_calculus

    While much of the notation may be applied with any tensors, operations relating to a differential structure are only applicable to tensor fields. Where needed, the notation extends to components of non-tensors, particularly multidimensional arrays. A tensor may be expressed as a linear sum of the tensor product of vector and covector basis ...