Search results
Results from the WOW.Com Content Network
Sodium amide is mainly used as a strong base in organic chemistry, often suspended (it is insoluble [7]) in liquid ammonia solution.One of the main advantages to the use of sodium amide is its relatively low nucleophilicity.
In chemistry, azide (/ ˈ eɪ z aɪ d /, AY-zyd) is a linear, polyatomic anion with the formula N − 3 and structure − N=N + =N −. It is the conjugate base of hydrazoic acid HN 3. Organic azides are organic compounds with the formula RN 3, containing the azide functional group. [1] The dominant application of azides is as a propellant in ...
In chemistry, a nucleophile is a chemical species that forms bonds by donating an electron pair. All molecules and ions with a free pair of electrons or at least one pi bond can act as nucleophiles. Because nucleophiles donate electrons, they are Lewis bases. Nucleophilic describes the affinity of a nucleophile to bond with positively charged ...
Arrow pushing or electron pushing is a technique used to describe the progression of organic chemistry reaction mechanisms. [1] It was first developed by Sir Robert Robinson.In using arrow pushing, "curved arrows" or "curly arrows" are drawn on the structural formulae of reactants in a chemical equation to show the reaction mechanism.
In chemistry, a nucleophilic substitution (S N) is a class of chemical reactions in which an electron-rich chemical species (known as a nucleophile) replaces a functional group within another electron-deficient molecule (known as the electrophile). The molecule that contains the electrophile and the leaving functional group is called the substrate.
The mechanism above, loss of the hydride ion followed by abstraction of a proton, is supported by the fact that the nucleophile needs at least one hydrogen atom for the reaction to proceed. Another competing pathway could be the elimination of hydride by sodium to form sodium hydride.
A nucleophilic aromatic substitution (S N Ar) is a substitution reaction in organic chemistry in which the nucleophile displaces a good leaving group, such as a halide, on an aromatic ring. Aromatic rings are usually nucleophilic, but some aromatic compounds do undergo nucleophilic substitution.
In chemistry, a nucleofuge (from nucleo- 'atomic nucleus' and fuge 'to run away/escape') is a leaving group which retains the lone pair of electrons from its previous bond with another species. For example, in the S N 2 mechanism , a nucleophile attacks an organic compound containing the nucleofuge (the bromo group ) which simultaneously breaks ...