enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Pythagorean theorem - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_theorem

    A Pythagorean triple has three positive integers a, b, and c, such that a 2 + b 2 = c 2. In other words, a Pythagorean triple represents the lengths of the sides of a right triangle where all three sides have integer lengths. [1] Such a triple is commonly written (a, b, c). Some well-known examples are (3, 4, 5) and (5, 12, 13).

  3. Pythagorean triple - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_triple

    A triangle whose side lengths are a Pythagorean triple is a right triangle and called a Pythagorean triangle. A primitive Pythagorean triple is one in which a, b and c are coprime (that is, they have no common divisor larger than 1). [1] For example, (3, 4, 5) is a primitive Pythagorean triple whereas (6, 8, 10) is not.

  4. Spiral of Theodorus - Wikipedia

    en.wikipedia.org/wiki/Spiral_of_Theodorus

    The spiral is started with an isosceles right triangle, with each leg having unit length.Another right triangle (which is the only automedian right triangle) is formed, with one leg being the hypotenuse of the prior right triangle (with length the square root of 2) and the other leg having length of 1; the length of the hypotenuse of this second right triangle is the square root of 3.

  5. Pythagoreanism - Wikipedia

    en.wikipedia.org/wiki/Pythagoreanism

    Isidore relied on the arithmetic of Nicomachus, who had fashioned himself as heir of Pythagoras, and took things further by studying the etymology of the name of each number. [77] The 12th century theologian Hugh of Saint Victor found Pythagorean numerology so alluring that he set out to explain the human body entirely in numbers. In the 13th ...

  6. Pythagorean Triangles - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_Triangles

    Chapter 4 considers special classes of Pythagorean triangles, including those with sides in arithmetic progression, nearly-isosceles triangles, and the relation between nearly-isosceles triangles and square triangular numbers. The next two chapters characterize the numbers that can appear in Pythagorean triples, and chapters 7–9 find sets of ...

  7. Tree of primitive Pythagorean triples - Wikipedia

    en.wikipedia.org/wiki/Tree_of_primitive...

    A Pythagorean triple is a set of three positive integers a, b, and c having the property that they can be respectively the two legs and the hypotenuse of a right triangle, thus satisfying the equation + =; the triple is said to be primitive if and only if the greatest common divisor of a, b, and c is one.

  8. Geometry - Wikipedia

    en.wikipedia.org/wiki/Geometry

    Visual checking of the Pythagorean theorem for the (3, 4, 5) triangle as in the Zhoubi Suanjing 500–200 BC. The Pythagorean theorem is a consequence of the Euclidean metric . The concept of length or distance can be generalized, leading to the idea of metrics . [ 65 ]

  9. List of triangle topics - Wikipedia

    en.wikipedia.org/wiki/List_of_triangle_topics

    This list of triangle topics includes things related to the geometric shape, either abstractly, as in idealizations studied by geometers, or in triangular arrays such as Pascal's triangle or triangular matrices, or concretely in physical space.