enow.com Web Search

  1. Ads

    related to: hyperbolic geometry parallel lines proofs worksheet 1 pdf template

Search results

  1. Results from the WOW.Com Content Network
  2. Ultraparallel theorem - Wikipedia

    en.wikipedia.org/wiki/Ultraparallel_theorem

    In the Beltrami-Klein model of the hyperbolic geometry: two ultraparallel lines correspond to two non-intersecting chords. The poles of these two lines are the respective intersections of the tangent lines to the boundary circle at the endpoints of the chords. Lines perpendicular to line l are modeled by chords whose extension passes through ...

  3. Constructions in hyperbolic geometry - Wikipedia

    en.wikipedia.org/wiki/Constructions_in...

    Hyperbolic geometry is a non-Euclidean geometry where the first four axioms of Euclidean geometry are kept but the fifth axiom, the parallel postulate, is changed.The fifth axiom of hyperbolic geometry says that given a line L and a point P not on that line, there are at least two lines passing through P that are parallel to L. [1]

  4. Hyperbolic geometry - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_geometry

    Compared to Euclidean geometry, hyperbolic geometry presents many difficulties for a coordinate system: the angle sum of a quadrilateral is always less than 360°; there are no equidistant lines, so a proper rectangle would need to be enclosed by two lines and two hypercycles; parallel-transporting a line segment around a quadrilateral causes ...

  5. Limiting parallel - Wikipedia

    en.wikipedia.org/wiki/Limiting_parallel

    The two lines through a given point P and limiting parallel to line R.. In neutral or absolute geometry, and in hyperbolic geometry, there may be many lines parallel to a given line through a point not on line ; however, in the plane, two parallels may be closer to than all others (one in each direction of ).

  6. Angle of parallelism - Wikipedia

    en.wikipedia.org/wiki/Angle_of_parallelism

    In hyperbolic geometry, angle of parallelism () is the angle at the non-right angle vertex of a right hyperbolic triangle having two asymptotic parallel sides. The angle depends on the segment length a between the right angle and the vertex of the angle of parallelism. Given a point not on a line, drop a perpendicular to the line from the point.

  7. Hjelmslev transformation - Wikipedia

    en.wikipedia.org/wiki/Hjelmslev_transformation

    The Hjelmslev transformation is a method of mapping an infinite line into a finite one in hyperbolic geometry. Lobachevsky observes, using a combination of his 16th and 23rd theorems, that it is a fundamental characteristic of hyperbolic geometry that there must exist a distinct angle of parallelism for any given line length. [ 2 ]

  8. Poincaré disk model - Wikipedia

    en.wikipedia.org/wiki/Poincaré_disk_model

    Poincaré disk with hyperbolic parallel lines Poincaré disk model of the truncated triheptagonal tiling.. In geometry, the Poincaré disk model, also called the conformal disk model, is a model of 2-dimensional hyperbolic geometry in which all points are inside the unit disk, and straight lines are either circular arcs contained within the disk that are orthogonal to the unit circle or ...

  9. Horocycle - Wikipedia

    en.wikipedia.org/wiki/Horocycle

    A blue horocycle in the Poincaré disk model and some red normals. The normals converge asymptotically to the upper central ideal point.. In hyperbolic geometry, a horocycle (from Greek roots meaning "boundary circle"), sometimes called an oricycle or limit circle, is a curve of constant curvature where all the perpendicular geodesics through a point on a horocycle are limiting parallel, and ...

  1. Ads

    related to: hyperbolic geometry parallel lines proofs worksheet 1 pdf template