enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Curvilinear coordinates - Wikipedia

    en.wikipedia.org/wiki/Curvilinear_coordinates

    Consequently, a general curvilinear coordinate system has two sets of basis vectors for every point: {b 1, b 2, b 3} is the contravariant basis, and {b 1, b 2, b 3} is the covariant (a.k.a. reciprocal) basis. The covariant and contravariant basis vectors types have identical direction for orthogonal curvilinear coordinate systems, but as usual ...

  3. Covariance and contravariance of vectors - Wikipedia

    en.wikipedia.org/wiki/Covariance_and_contra...

    The terms covariant and contravariant were introduced by James Joseph Sylvester in 1851. [3] [4] Curvilinear coordinate systems, such as cylindrical or spherical coordinates, are often used in physical and geometric problems. Associated with any coordinate system is a natural choice of coordinate basis for vectors based at each point of the ...

  4. Tensors in curvilinear coordinates - Wikipedia

    en.wikipedia.org/wiki/Tensors_in_curvilinear...

    Vector and tensor calculus in general curvilinear coordinates is used in tensor analysis on four-dimensional curvilinear manifolds in general relativity, [8] in the mechanics of curved shells, [6] in examining the invariance properties of Maxwell's equations which has been of interest in metamaterials [9] [10] and in many other fields.

  5. Orthogonal coordinates - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_coordinates

    In Cartesian coordinates, the basis vectors are fixed (constant). In the more general setting of curvilinear coordinates, a point in space is specified by the coordinates, and at every such point there is bound a set of basis vectors, which generally are not constant: this is the essence of curvilinear coordinates in general and is a very important concept.

  6. Covariant derivative - Wikipedia

    en.wikipedia.org/wiki/Covariant_derivative

    The covariant derivative is required to transform, under a change in coordinates, by a covariant transformation in the same way as a basis does (hence the name). In the case of Euclidean space, one usually defines the directional derivative of a vector field in terms of the difference between two vectors at two nearby points.

  7. Covariant transformation - Wikipedia

    en.wikipedia.org/wiki/Covariant_transformation

    The explicit form of a covariant transformation is best introduced with the transformation properties of the derivative of a function. Consider a scalar function f (like the temperature at a location in a space) defined on a set of points p, identifiable in a given coordinate system , =,, … (such a collection is called a manifold).

  8. Levi-Civita connection - Wikipedia

    en.wikipedia.org/wiki/Levi-Civita_connection

    The Levi-Civita connection is named after Tullio Levi-Civita, although originally "discovered" by Elwin Bruno Christoffel.Levi-Civita, [1] along with Gregorio Ricci-Curbastro, used Christoffel's symbols [2] to define the notion of parallel transport and explore the relationship of parallel transport with the curvature, thus developing the modern notion of holonomy.

  9. Skew coordinates - Wikipedia

    en.wikipedia.org/wiki/Skew_coordinates

    A system of skew coordinates is a curvilinear coordinate system where the coordinate surfaces are not orthogonal, [1] in contrast to orthogonal coordinates.. Skew coordinates tend to be more complicated to work with compared to orthogonal coordinates since the metric tensor will have nonzero off-diagonal components, preventing many simplifications in formulas for tensor algebra and tensor ...