enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Knapsack problem - Wikipedia

    en.wikipedia.org/wiki/Knapsack_problem

    A 1999 study of the Stony Brook University Algorithm Repository showed that, out of 75 algorithmic problems related to the field of combinatorial algorithms and algorithm engineering, the knapsack problem was the 19th most popular and the third most needed after suffix trees and the bin packing problem.

  3. Change-making problem - Wikipedia

    en.wikipedia.org/wiki/Change-making_problem

    Another example is attempting to make 40 US cents without nickels (denomination 25, 10, 1) with similar result — the greedy chooses seven coins (25, 10, and 5 × 1), but the optimal is four (4 × 10). A coin system is called "canonical" if the greedy algorithm always solves its change-making problem optimally.

  4. List of knapsack problems - Wikipedia

    en.wikipedia.org/wiki/List_of_knapsack_problems

    The knapsack problem is one of the most studied problems in combinatorial optimization, with many real-life applications. For this reason, many special cases and generalizations have been examined. For this reason, many special cases and generalizations have been examined.

  5. Combinatorial optimization - Wikipedia

    en.wikipedia.org/wiki/Combinatorial_optimization

    A minimum spanning tree of a weighted planar graph.Finding a minimum spanning tree is a common problem involving combinatorial optimization. Combinatorial optimization is a subfield of mathematical optimization that consists of finding an optimal object from a finite set of objects, [1] where the set of feasible solutions is discrete or can be reduced to a discrete set.

  6. Greedy algorithm - Wikipedia

    en.wikipedia.org/wiki/Greedy_algorithm

    A greedy algorithm is any algorithm that follows the problem-solving heuristic of making the locally optimal choice at each stage. [1] In many problems, a greedy strategy does not produce an optimal solution, but a greedy heuristic can yield locally optimal solutions that approximate a globally optimal solution in a reasonable amount of time.

  7. Generalized assignment problem - Wikipedia

    en.wikipedia.org/wiki/Generalized_assignment_problem

    For the problem variant in which not every item must be assigned to a bin, there is a family of algorithms for solving the GAP by using a combinatorial translation of any algorithm for the knapsack problem into an approximation algorithm for the GAP. [3] Using any -approximation algorithm ALG for the knapsack problem, it is possible to ...

  8. Combinatorial participatory budgeting - Wikipedia

    en.wikipedia.org/wiki/Combinatorial...

    The budgeting method most common in practice is a greedy solution to a variant of the knapsack problem: the projects are ordered by decreasing order of the number of votes they received, and selected one-by-one until the budget is exhausted. Alternatively, if the number of projects is sufficiently small, the knapsack problem may be solved ...

  9. Optimal substructure - Wikipedia

    en.wikipedia.org/wiki/Optimal_substructure

    Typically, a greedy algorithm is used to solve a problem with optimal substructure if it can be proven by induction that this is optimal at each step. [1] Otherwise, provided the problem exhibits overlapping subproblems as well, divide-and-conquer methods or dynamic programming may be used. If there are no appropriate greedy algorithms and the ...