enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Continuous function - Wikipedia

    en.wikipedia.org/wiki/Continuous_function

    The epsilon–delta definition of a limit was introduced to formalize the definition of continuity. Continuity is one of the core concepts of calculus and mathematical analysis, where arguments and values of functions are real and complex numbers. The concept has been generalized to functions between metric spaces and between topological spaces.

  3. Differentiable function - Wikipedia

    en.wikipedia.org/wiki/Differentiable_function

    In complex analysis, complex-differentiability is defined using the same definition as single-variable real functions. This is allowed by the possibility of dividing complex numbers . So, a function f : C → C {\textstyle f:\mathbb {C} \to \mathbb {C} } is said to be differentiable at x = a {\textstyle x=a} when

  4. Derivative - Wikipedia

    en.wikipedia.org/wiki/Derivative

    Continuity and differentiability This function does not have a derivative at the marked point, as the function is not continuous there (specifically, it has a jump discontinuity ). The absolute value function is continuous but fails to be differentiable at x = 0 since the tangent slopes do not approach the same value from the left as they do ...

  5. Smoothness - Wikipedia

    en.wikipedia.org/wiki/Smoothness

    In mathematical analysis, the smoothness of a function is a property measured by the number of continuous derivatives (differentiability class) it has over its domain. [ 1 ] A function of class C k {\displaystyle C^{k}} is a function of smoothness at least k ; that is, a function of class C k {\displaystyle C^{k}} is a function that has a k th ...

  6. Weierstrass function - Wikipedia

    en.wikipedia.org/wiki/Weierstrass_function

    Moreover, the fact that the set of non-differentiability points for a monotone function is measure-zero implies that the rapid oscillations of Weierstrass' function are necessary to ensure that it is nowhere-differentiable. The Weierstrass function was one of the first fractals studied, although this term was not used until much later. The ...

  7. Real analysis - Wikipedia

    en.wikipedia.org/wiki/Real_analysis

    Differentiability is therefore a stronger regularity condition (condition describing the "smoothness" of a function) than continuity, and it is possible for a function to be continuous on the entire real line but not differentiable anywhere (see Weierstrass's nowhere differentiable continuous function). It is possible to discuss the existence ...

  8. Chain rule - Wikipedia

    en.wikipedia.org/wiki/Chain_rule

    Constantin Carathéodory's alternative definition of the differentiability of a function can be used to give an elegant proof of the chain rule. [6] Under this definition, a function f is differentiable at a point a if and only if there is a function q, continuous at a and such that f(x) − f(a) = q(x)(x − a).

  9. Absolute continuity - Wikipedia

    en.wikipedia.org/wiki/Absolute_continuity

    Absolute continuity of measures is reflexive and transitive, but is not antisymmetric, so it is a preorder rather than a partial order. Instead, if μ ≪ ν {\displaystyle \mu \ll \nu } and ν ≪ μ , {\displaystyle \nu \ll \mu ,} the measures μ {\displaystyle \mu } and ν {\displaystyle \nu } are said to be equivalent .