Search results
Results from the WOW.Com Content Network
A 1999 study of the Stony Brook University Algorithm Repository showed that, out of 75 algorithmic problems related to the field of combinatorial algorithms and algorithm engineering, the knapsack problem was the 19th most popular and the third most needed after suffix trees and the bin packing problem. [8]
In the remaining case, the algorithm chooses x i = w i. Because of the need to sort the materials, this algorithm takes time O(n log n) on inputs with n materials. [1] [2] However, by adapting an algorithm for finding weighted medians, it is possible to solve the problem in time O(n). [2]
The problem of fractional knapsack with penalties was introduced by Malaguti, Monaci, Paronuzzi and Pferschy. [44] They developed an FPTAS and a dynamic program for the problem, and they showed an extensive computational study comparing the performance of their models.
The knapsack problem is one of the most studied problems in combinatorial optimization, with many real-life applications. For this reason, many special cases and generalizations have been examined. For this reason, many special cases and generalizations have been examined.
The knapsack problem can be solved by dynamic programming in pseudo-polynomial time: (), where m is the number of inputs and V is the number of different possible values. To get a polynomial-time algorithm, we can solve the knapsack problem approximately, using input rounding.
Here, complexity refers to the time complexity of performing computations on a multitape Turing machine. [1] See big O notation for an explanation of the notation used. Note: Due to the variety of multiplication algorithms, () below stands in for the complexity of the chosen multiplication algorithm.
For example, the NP-hard knapsack problem can be solved by a dynamic programming algorithm requiring a number of steps polynomial in the size of the knapsack and the number of items (assuming that all data are scaled to be integers); however, the runtime of this algorithm is exponential time since the input sizes of the objects and knapsack are ...
Each packing problem has a dual covering problem, which asks how many of the same objects are required to completely cover every region of the container, where objects are allowed to overlap. In a bin packing problem, people are given: A container, usually a two- or three-dimensional convex region, possibly of infinite size. Multiple containers ...