Search results
Results from the WOW.Com Content Network
Flux F through a surface, dS is the differential vector area element, n is the unit normal to the surface. Left: No flux passes in the surface, the maximum amount flows normal to the surface.
Therefore, the continuity equation for an incompressible fluid reduces further to: = This relationship, =, identifies that the divergence of the flow velocity vector is equal to zero (), which means that for an incompressible fluid the flow velocity field is a solenoidal vector field or a divergence-free vector field.
If the fluid flow is irrotational, the total pressure is uniform and Bernoulli's principle can be summarized as "total pressure is constant everywhere in the fluid flow". [1]: Equation 3.12 It is reasonable to assume that irrotational flow exists in any situation where a large body of fluid is flowing past a solid body. Examples are aircraft in ...
For example, the Navier–Stokes equations are often used to model fluid flows that are turbulent, which means that the fluid is highly chaotic and unpredictable. Turbulence is a difficult phenomenon to model and understand, and it adds another layer of complexity to the problem of solving the Navier–Stokes equations.
The vorticity equation of fluid dynamics describes the evolution of the vorticity ω of a particle of a fluid as it moves with its flow; that is, the local rotation of the fluid (in terms of vector calculus this is the curl of the flow velocity). The governing equation is:
Darcy's law is an equation that describes the flow of a fluid through a porous medium and through a Hele-Shaw cell.The law was formulated by Henry Darcy based on results of experiments [1] on the flow of water through beds of sand, forming the basis of hydrogeology, a branch of earth sciences.
As the fluid flows outward, the area of flow increases. As a result, to satisfy continuity equation, the velocity decreases and the streamlines spread out. The velocity at all points at a given distance from the source is the same. Fig 2 - Streamlines and potential lines for source flow. The velocity of fluid flow can be given as -
This equation states: In a steady flow of an inviscid fluid without external forces, the center of curvature of the streamline lies in the direction of decreasing radial pressure. Although this relationship between the pressure field and flow curvature is very useful, it doesn't have a name in the English-language scientific literature. [25]