Search results
Results from the WOW.Com Content Network
Non-parametric (or distribution-free) inferential statistical methods are mathematical procedures for statistical hypothesis testing which, unlike parametric statistics, make no assumptions about the probability distributions of the variables being assessed. The most frequently used tests include
Assumptions, parametric and non-parametric: There are two groups of statistical tests, parametric and non-parametric. The choice between these two groups needs to be justified. The choice between these two groups needs to be justified.
Nonparametric regression is a category of regression analysis in which the predictor does not take a predetermined form but is constructed according to information derived from the data. That is, no parametric equation is assumed for the relationship between predictors and dependent variable.
Nonparametric models are therefore also called distribution free. Nonparametric (or distribution-free) inferential statistical methods are mathematical procedures for statistical hypothesis testing which, unlike parametric statistics, make no assumptions about the frequency distributions of the variables being assessed.
This is a list of some of the more commonly known problems that are NP-complete when expressed as decision problems. As there are thousands of such problems known, this list is in no way comprehensive. Many problems of this type can be found in Garey & Johnson (1979).
List of fields of application of statistics; List of graphical methods; List of statistical software. Comparison of statistical packages; List of graphing software; Comparison of Gaussian process software; List of stochastic processes topics; List of matrices used in statistics; Timeline of probability and statistics; List of unsolved problems ...
Together with rank statistics, order statistics are among the most fundamental tools in non-parametric statistics and inference. Important special cases of the order statistics are the minimum and maximum value of a sample, and (with some qualifications discussed below) the sample median and other sample quantiles.
The estimation method requires that the data are independent and identically distributed (iid). It performs well even when the distribution is asymmetric or censored. [1] EL methods can also handle constraints and prior information on parameters. Art Owen pioneered work in this area with his 1988 paper. [2]