enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cation–π interaction - Wikipedia

    en.wikipedia.org/wiki/Cation–π_interaction

    Cation–π interaction is a noncovalent molecular interaction between the face of an electron-rich π system (e.g. benzene, ethylene, acetylene) and an adjacent cation (e.g. Li +, Na +). This interaction is an example of noncovalent bonding between a monopole (cation) and a quadrupole (π system).

  3. Formylation - Wikipedia

    en.wikipedia.org/wiki/Formylation

    As it generally begins with nucleophilic attack by the aromatic group, the electron density of the ring is an important factor. Some aromatic compounds, such as pyrrole, are known to formylate regioselectively. [6] Formylation of benzene rings can be achieved via the Gattermann reaction and Gattermann-Koch reaction.

  4. Ortho effect - Wikipedia

    en.wikipedia.org/wiki/Ortho_effect

    There are three main ortho effects in substituted benzene compounds: Steric hindrance forces cause substitution of a chemical group in the ortho position of benzoic acids become stronger acids. Steric inhibition of protonation caused by substitution of anilines to become weaker bases, compared to substitution of isomers in the meta and para ...

  5. Pi-interaction - Wikipedia

    en.wikipedia.org/wiki/Pi-interaction

    In chemistry, π-effects or π-interactions are a type of non-covalent interaction that involves π systems.Just like in an electrostatic interaction where a region of negative charge interacts with a positive charge, the electron-rich π system can interact with a metal (cationic or neutral), an anion, another molecule and even another π system. [1]

  6. Electrophilic aromatic directing groups - Wikipedia

    en.wikipedia.org/wiki/Electrophilic_aromatic...

    Oppositely, withdrawing electron density is more favourable: (see the picture on the right). The -M effect of the nitroso group. As a result, the nitroso group is a deactivator. However, it has available to donate electron density to the benzene ring during the Wheland intermediate, making it still being an ortho / para director.

  7. Simple aromatic ring - Wikipedia

    en.wikipedia.org/wiki/Simple_aromatic_ring

    Simple aromatic rings can be heterocyclic if they contain non-carbon ring atoms, for example, oxygen, nitrogen, or sulfur. They can be monocyclic as in benzene, bicyclic as in naphthalene, or polycyclic as in anthracene. Simple monocyclic aromatic rings are usually five-membered rings like pyrrole or six-membered rings like pyridine.

  8. Hückel's rule - Wikipedia

    en.wikipedia.org/wiki/Hückel's_rule

    Hückel's rule can also be applied to molecules containing other atoms such as nitrogen or oxygen. For example pyridine (C 5 H 5 N) has a ring structure similar to benzene, except that one -CH- group is replaced by a nitrogen atom with no hydrogen. There are still six π electrons and the pyridine molecule is also aromatic and known for its ...

  9. Sigma complex - Wikipedia

    en.wikipedia.org/wiki/Sigma_complex

    In the halogenation of benzene, the sigma complex comprises the six carbon atoms of the benzene ring, each bonded to a hydrogen atom. An additional halogen atom is bonded to one of the carbon atoms, which is sp 3-hybridized, while the other carbons remain sp 2-hybridized.