enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Logarithm - Wikipedia

    en.wikipedia.org/wiki/Logarithm

    In mathematics, the logarithm to base b is the inverse function of exponentiation with base b. That means that the logarithm of a number x to the base b is the exponent to which b must be raised to produce x. For example, since 1000 = 10 3, the logarithm base of 1000 is 3, or log 10 (1000) = 3.

  3. Common logarithm - Wikipedia

    en.wikipedia.org/wiki/Common_logarithm

    In mathematics, the common logarithm (aka "standard logarithm") is the logarithm with base 10. [1] It is also known as the decadic logarithm , the decimal logarithm and the Briggsian logarithm . The name "Briggsian logarithm" is in honor of the British mathematician Henry Briggs who conceived of and developed the values for the "common logarithm".

  4. List of logarithmic identities - Wikipedia

    en.wikipedia.org/wiki/List_of_logarithmic_identities

    Logarithms can be used to make calculations easier. For example, two numbers can be multiplied just by using a logarithm table and adding. These are often known as logarithmic properties, which are documented in the table below. [2] The first three operations below assume that x = b c and/or y = b d, so that log b (x) = c and log b (y) = d.

  5. Discrete logarithm - Wikipedia

    en.wikipedia.org/wiki/Discrete_logarithm

    Discrete logarithms are quickly computable in a few special cases. However, no efficient method is known for computing them in general. In cryptography, the computational complexity of the discrete logarithm problem, along with its application, was first proposed in the Diffie–Hellman problem.

  6. P versus NP problem - Wikipedia

    en.wikipedia.org/wiki/P_versus_NP_problem

    Such problems are called NP-intermediate problems. The graph isomorphism problem, the discrete logarithm problem, and the integer factorization problem are examples of problems believed to be NP-intermediate. They are some of the very few NP problems not known to be in P or to be NP-complete.

  7. Natural logarithm - Wikipedia

    en.wikipedia.org/wiki/Natural_logarithm

    The natural logarithm of a number is its logarithm to the base of the mathematical constant e, which is an irrational and transcendental number approximately equal to 2.718 281 828 459. [1] The natural logarithm of x is generally written as ln x, log e x, or sometimes, if the base e is implicit, simply log x.

  8. Index calculus algorithm - Wikipedia

    en.wikipedia.org/wiki/Index_calculus_algorithm

    The basic idea of the algorithm is due to Western and Miller (1968), [4] which ultimately relies on ideas from Kraitchik (1922). [5] The first practical implementations followed the 1976 introduction of the Diffie-Hellman cryptosystem which relies on the discrete logarithm. Merkle's Stanford University dissertation (1979) was credited by Pohlig ...

  9. Complex logarithm - Wikipedia

    en.wikipedia.org/wiki/Complex_logarithm

    Such complex logarithm functions are analogous to the real logarithm function: >, which is the inverse of the real exponential function and hence satisfies e ln x = x for all positive real numbers x. Complex logarithm functions can be constructed by explicit formulas involving real-valued functions, by integration of 1 / z {\displaystyle 1/z ...