Search results
Results from the WOW.Com Content Network
De Moivre's Theorem for Trig Identities by Michael Croucher, Wolfram Demonstrations Project Listen to this article ( 18 minutes ) This audio file was created from a revision of this article dated 5 June 2021 ( 2021-06-05 ) , and does not reflect subsequent edits.
Published in 1738 by Woodfall and running for 258 pages, the second edition of de Moivre's book introduced the concept of normal distributions as approximations to binomial distributions. In effect de Moivre proved a special case of the central limit theorem. Sometimes his result is called the theorem of de Moivre–Laplace.
The essay includes theorems of conditional probability which form the basis of what is now called Bayes's Theorem, together with a detailed treatment of the problem of setting a prior probability. Bayes supposed a sequence of independent experiments, each having as its outcome either success or failure, the probability of success being some ...
According to the de Moivre–Laplace theorem, as n grows large, the shape of the discrete distribution converges to the continuous Gaussian curve of the normal distribution. In probability theory , the de Moivre–Laplace theorem , which is a special case of the central limit theorem , states that the normal distribution may be used as an ...
Thébault's theorem ; Theorem of de Moivre–Laplace (probability theory) Theorem of the cube (algebraic varieties) Theorem of the gnomon ; Theorem of three moments ; Theorem on friends and strangers (Ramsey theory) Thévenin's theorem (electrical circuits) Thompson transitivity theorem (finite groups)
De Moivre's most notable achievement in probability was the discovery of the first instance of central limit theorem, by which he was able to approximate the binomial distribution with the normal distribution. [16]
de Moivre's illustration of his piecewise linear approximation. De Moivre's law first appeared in his 1725 Annuities upon Lives, the earliest known example of an actuarial textbook. [6] Despite the name now given to it, de Moivre himself did not consider his law (he called it a "hypothesis") to be a true description of the pattern of human ...
In mathematics, a root of unity, occasionally called a de Moivre number, is any complex number that yields 1 when raised to some positive integer power n. Roots of unity are used in many branches of mathematics, and are especially important in number theory , the theory of group characters , and the discrete Fourier transform .