Search results
Results from the WOW.Com Content Network
A line integral of a scalar field is thus a line integral of a vector field, where the vectors are always tangential to the line of the integration. Line integrals of vector fields are independent of the parametrization r in absolute value, but they do depend on its orientation. Specifically, a reversal in the orientation of the parametrization ...
The theorem is a generalization of the second fundamental theorem of calculus to any curve in a plane or space (generally n-dimensional) rather than just the real line. If φ : U ⊆ R n → R is a differentiable function and γ a differentiable curve in U which starts at a point p and ends at a point q , then
In Gradshteyn and Ryzhik, integrals originating from the book by Bierens de Haan are denoted by BI. Not all closed-form expressions have closed-form antiderivatives; this study forms the subject of differential Galois theory , which was initially developed by Joseph Liouville in the 1830s and 1840s, leading to Liouville's theorem which ...
In vector calculus, Green's theorem relates a line integral around a simple closed curve C to a double integral over the plane region D (surface in ) bounded by C. It is the two-dimensional special case of Stokes' theorem (surface in R 3 {\displaystyle \mathbb {R} ^{3}} ).
If one assumes that the partial derivatives of a holomorphic function are continuous, the Cauchy integral theorem can be proven as a direct consequence of Green's theorem and the fact that the real and imaginary parts of = + must satisfy the Cauchy–Riemann equations in the region bounded by , and moreover in the open neighborhood U of this ...
In complex analysis, the residue theorem, sometimes called Cauchy's residue theorem, is a powerful tool to evaluate line integrals of analytic functions over closed curves; it can often be used to compute real integrals and infinite series as well. It generalizes the Cauchy integral theorem and Cauchy's integral formula.
In mathematics, the definite integral ∫ a b f ( x ) d x {\displaystyle \int _{a}^{b}f(x)\,dx} is the area of the region in the xy -plane bounded by the graph of f , the x -axis, and the lines x = a and x = b , such that area above the x -axis adds to the total, and that below the x -axis subtracts from the total.
Consider the following second-order problem, ′ + + = () =, where = {,, <is the Heaviside step function.The Laplace transform is defined by, = {()} = ().Upon taking term-by-term Laplace transforms, and utilising the rules for derivatives and integrals, the integro-differential equation is converted into the following algebraic equation,