enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Euler characteristic - Wikipedia

    en.wikipedia.org/wiki/Euler_characteristic

    Its Euler characteristic is 0, by the product property. More generally, any compact parallelizable manifold, including any compact Lie group, has Euler characteristic 0. [13] The Euler characteristic of any closed odd-dimensional manifold is also 0. [14] The case for orientable examples is a corollary of Poincaré duality.

  3. Euler class - Wikipedia

    en.wikipedia.org/wiki/Euler_class

    Thus the Euler class is a generalization of the Euler characteristic to vector bundles other than tangent bundles. In turn, the Euler class is the archetype for other characteristic classes of vector bundles, in that each "top" characteristic class equals the Euler class, as follows. Modding out by 2 induces a map

  4. Circle bundle - Wikipedia

    en.wikipedia.org/wiki/Circle_bundle

    This isomorphism is realized by the Euler class; equivalently, it is the first Chern class of a smooth complex line bundle (essentially because a circle is homotopically equivalent to , the complex plane with the origin removed; and so a complex line bundle with the zero section removed is homotopically equivalent to a circle bundle.)

  5. Riemann–Hurwitz formula - Wikipedia

    en.wikipedia.org/wiki/Riemann–Hurwitz_formula

    In calculating the Euler characteristic of S′ we notice the loss of e P − 1 copies of P above π(P) (that is, in the inverse image of π(P)). Now let us choose triangulations of S and S′ with vertices at the branch and ramification points, respectively, and use these to compute the Euler characteristics.

  6. Homology (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Homology_(mathematics)

    Homology theory can be said to start with the Euler polyhedron formula, or Euler characteristic. [16] This was followed by Riemann 's definition of genus and n -fold connectedness numerical invariants in 1857 and Betti 's proof in 1871 of the independence of "homology numbers" from the choice of basis.

  7. Electric charge - Wikipedia

    en.wikipedia.org/wiki/Electric_charge

    The SI unit of quantity of electric charge is the coulomb (symbol: C). The coulomb is defined as the quantity of charge that passes through the cross section of an electrical conductor carrying one ampere for one second. [6] This unit was proposed in 1946 and ratified in 1948. [6] The lowercase symbol q is

  8. Poincaré–Hopf theorem - Wikipedia

    en.wikipedia.org/wiki/Poincaré–Hopf_theorem

    The Euler characteristic of a closed surface is a purely topological concept, whereas the index of a vector field is purely analytic.Thus, this theorem establishes a deep link between two seemingly unrelated areas of mathematics.

  9. Charge transfer coefficient - Wikipedia

    en.wikipedia.org/wiki/Charge_transfer_coefficient

    Charge transfer coefficient, and symmetry factor (symbols α and β, respectively) are two related parameters used in description of the kinetics of electrochemical reactions. They appear in the Butler–Volmer equation and related expressions.