Search results
Results from the WOW.Com Content Network
A thermodynamic potential (or more accurately, a thermodynamic potential energy) [1] [2] is a scalar quantity used to represent the thermodynamic state of a system. Just as in mechanics , where potential energy is defined as capacity to do work, similarly different potentials have different meanings.
In thermodynamics, the Helmholtz free energy (or Helmholtz energy) is a thermodynamic potential that measures the useful work obtainable from a closed thermodynamic system at a constant temperature . The change in the Helmholtz energy during a process is equal to the maximum amount of work that the system can perform in a thermodynamic process ...
In thermodynamics, the Gibbs free energy (or Gibbs energy as the recommended name; symbol ) is a thermodynamic potential that can be used to calculate the maximum amount of work, other than pressure–volume work, that may be performed by a thermodynamically closed system at constant temperature and pressure.
where α is an exponent specific to the system (e.g. in the absence of a potential field, α = 3/2), z is exp(μ/k B T) where μ is the chemical potential, Li is the polylogarithm, ζ is the Riemann zeta function, and T c is the critical temperature at which a Bose–Einstein condensate begins to form.
The grand potential or Landau potential or Landau free energy is a quantity used in statistical mechanics, especially for irreversible processes in open systems. The grand potential is the characteristic state function for the grand canonical ensemble .
The first established thermodynamic principle, which eventually became the second law of thermodynamics, was formulated by Sadi Carnot in 1824 in his book Reflections on the Motive Power of Fire. By 1860, as formalized in the works of scientists such as Rudolf Clausius and William Thomson , what are now known as the first and second laws were ...
This is an important step since, according to the theory of thermodynamic potentials, if we can express the entropy as a function of U (U is a thermodynamic potential), volume V and the number of particles N, then we will have a complete statement of the thermodynamic behavior of the ideal gas. We will be able to derive both the ideal gas law ...
This page was last edited on 20 December 2020, at 23:29 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.