enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of uniform polyhedra - Wikipedia

    en.wikipedia.org/wiki/List_of_uniform_polyhedra

    Four numbering schemes for the uniform polyhedra are in common use, distinguished by letters: [C] Coxeter et al., 1954, showed the convex forms as figures 15 through 32; three prismatic forms, figures 33–35; and the nonconvex forms, figures 36–92.

  3. Pentahedron - Wikipedia

    en.wikipedia.org/wiki/Pentahedron

    There is a third topological polyhedral figure with 5 faces, degenerate as a polyhedron: it exists as a spherical tiling of digon faces, called a pentagonal hosohedron with Schläfli symbol {2,5}. It has 2 (antipodal point) vertices, 5 edges, and 5 digonal faces.

  4. List of small polyhedra by vertex count - Wikipedia

    en.wikipedia.org/wiki/List_of_small_polyhedra_by...

    In geometry, a polyhedron is a solid in three dimensions with flat faces and straight edges. Every edge has exactly two faces, and every vertex is surrounded by alternating faces and edges. The smallest polyhedron is the tetrahedron with 4 triangular faces, 6 edges, and 4 vertices.

  5. Platonic solid - Wikipedia

    en.wikipedia.org/wiki/Platonic_solid

    The Platonic solids have been known since antiquity. It has been suggested that certain carved stone balls created by the late Neolithic people of Scotland represent these shapes; however, these balls have rounded knobs rather than being polyhedral, the numbers of knobs frequently differed from the numbers of vertices of the Platonic solids, there is no ball whose knobs match the 20 vertices ...

  6. Tetrahedron - Wikipedia

    en.wikipedia.org/wiki/Tetrahedron

    The skeleton of the tetrahedron (comprising the vertices and edges) forms a graph, with 4 vertices, and 6 edges. It is a special case of the complete graph, K 4, and wheel graph, W 4. [48] It is one of 5 Platonic graphs, each a skeleton of its Platonic solid.

  7. List of polygons - Wikipedia

    en.wikipedia.org/wiki/List_of_polygons

    In geometry, a polygon is traditionally a plane figure that is bounded by a finite chain of straight line segments closing in a loop to form a closed chain. These segments are called its edges or sides, and the points where two of the edges meet are the polygon's vertices (singular: vertex) or corners.

  8. Star polygon - Wikipedia

    en.wikipedia.org/wiki/Star_polygon

    If p and q are not coprime, a degenerate polygon will result with coinciding vertices and edges. For example, {6/2} will appear as a triangle, but can be labeled with two sets of vertices: 1-3 and 4-6. This should be seen not as two overlapping triangles, but as a double-winding single unicursal hexagon. [7] [8]

  9. Polyhedron - Wikipedia

    en.wikipedia.org/wiki/Polyhedron

    By forgetting the face structure, any polyhedron gives rise to a graph, called its skeleton, with corresponding vertices and edges. Such figures have a long history: Leonardo da Vinci devised frame models of the regular solids, which he drew for Pacioli's book Divina Proportione, and similar wire-frame polyhedra appear in M.C. Escher's print ...