Search results
Results from the WOW.Com Content Network
Only lines with n = 1 or 3 have no points (red). In mathematics, the coin problem (also referred to as the Frobenius coin problem or Frobenius problem, after the mathematician Ferdinand Frobenius) is a mathematical problem that asks for the largest monetary amount that cannot be obtained using only coins of specified denominations. [1]
A more general version of Frobenius's theorem states that if C is a conjugacy class with h elements of a finite group G with g elements and n is a positive integer, then the number of elements k such that k n is in C is a multiple of the greatest common divisor (hn,g) (Hall 1959, theorem 9.1.1).
The postage stamp problem (also called the Frobenius Coin Problem and the Chicken McNugget Theorem [1]) is a mathematical riddle that asks what is the smallest postage value which cannot be placed on an envelope, if the latter can hold only a limited number of stamps, and these may only have certain specified face values.
Frobenius theorem (real division algebras) in abstract algebra characterizing the finite-dimensional real division algebras; Frobenius reciprocity theorem in group representation theory describing the reciprocity relation between restricted and induced representations on a subgroup
Ray E. Artz (2009) Scalar Algebras and Quaternions, Theorem 7.1 "Frobenius Classification", page 26. Ferdinand Georg Frobenius (1878) "Über lineare Substitutionen und bilineare Formen", Journal für die reine und angewandte Mathematik 84:1–63 (Crelle's Journal). Reprinted in Gesammelte Abhandlungen Band I, pp. 343–405.
The 1-form dz − y dx. on R 3 maximally violates the assumption of Frobenius' theorem. These planes appear to twist along the y-axis.It is not integrable, as can be verified by drawing an infinitesimal square in the x-y plane, and follow the path along the one-forms.
The most famous of these are the Cartan–Kähler theorem, which only works for real analytic differential systems, and the Cartan–Kuranishi prolongation theorem. See § Further reading for details. The Newlander–Nirenberg theorem gives integrability conditions for an almost-complex structure.
He also posed the following problem: If, in the above theorem, k = 1, then the solutions of the equation x n = 1 in G form a subgroup. Many years ago this problem was solved for solvable groups. [3] Only in 1991, after the classification of finite simple groups, was this problem solved in general.