enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kernel (image processing) - Wikipedia

    en.wikipedia.org/wiki/Kernel_(image_processing)

    In image processing, a kernel, convolution matrix, or mask is a small matrix used for blurring, sharpening, embossing, edge detection, and more. This is accomplished by doing a convolution between the kernel and an image. Or more simply, when each pixel in the output image is a function of the nearby pixels (including itself) in the input image ...

  3. Convolutional neural network - Wikipedia

    en.wikipedia.org/wiki/Convolutional_neural_network

    A convolutional neural network (CNN) is a regularized type of feedforward neural network that learns features by itself via filter (or kernel) optimization. This type of deep learning network has been applied to process and make predictions from many different types of data including text, images and audio. [1]

  4. Kernel - Wikipedia

    en.wikipedia.org/wiki/Kernel

    Kernel (image processing), a matrix used for image convolution; Compute kernel, in GPGPU programming; Kernel method, in machine learning; Kernelization, a technique for designing efficient algorithms Kernel, a routine that is executed in a vectorized loop, for example in general-purpose computing on graphics processing units

  5. Kernel method - Wikipedia

    en.wikipedia.org/wiki/Kernel_method

    Kernel machines are slow to compute for datasets larger than a couple of thousand examples without parallel processing. Kernel methods owe their name to the use of kernel functions, which enable them to operate in a high-dimensional, implicit feature space without ever computing the coordinates of the data in that space, but rather by simply ...

  6. scikit-image - Wikipedia

    en.wikipedia.org/wiki/Scikit-image

    scikit-image (formerly scikits.image) is an open-source image processing library for the Python programming language. [2] It includes algorithms for segmentation , geometric transformations, color space manipulation, analysis, filtering, morphology, feature detection , and more. [ 3 ]

  7. Ridge detection - Wikipedia

    en.wikipedia.org/wiki/Ridge_detection

    In image processing, ridge detection is the attempt, via software, to locate ridges in an image, defined as curves whose points are local maxima of the function, akin to geographical ridges. For a function of N variables, its ridges are a set of curves whose points are local maxima in N − 1 dimensions.

  8. Kernel methods for vector output - Wikipedia

    en.wikipedia.org/wiki/Kernel_methods_for_vector...

    A non-trivial way to mix the latent functions is by convolving a base process with a smoothing kernel. If the base process is a Gaussian process, the convolved process is Gaussian as well. We can therefore exploit convolutions to construct covariance functions. [20] This method of producing non-separable kernels is known as process convolution.

  9. Inception (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Inception_(deep_learning...

    As an example, a single 5×5 convolution can be factored into 3×3 stacked on top of another 3×3. Both has a receptive field of size 5×5. The 5×5 convolution kernel has 25 parameters, compared to just 18 in the factorized version. Thus, the 5×5 convolution is strictly more powerful than the factorized version.