Search results
Results from the WOW.Com Content Network
A strong acid, such as hydrochloric acid, at concentration 1 mol dm −3 has a pH of 0, while a strong alkali like sodium hydroxide, at the same concentration, has a pH of 14. Since pH is a logarithmic scale, a difference of one in pH is equivalent to a tenfold difference in hydrogen ion concentration.
The distribution coefficient, log D, is the ratio of the sum of the concentrations of all forms of the compound (ionized plus un-ionized) in each of the two phases, one essentially always aqueous; as such, it depends on the pH of the aqueous phase, and log D = log P for non-ionizable compounds at any pH.
K 1, K 2 and DIC each have units of a concentration, e.g. mol/L. A Bjerrum plot is obtained by using these three equations to plot these three species against pH = −log 10 [H +] eq, for given K 1, K 2 and DIC. The fractions in these equations give the three species' relative proportions, and so if DIC is unknown, or the actual concentrations ...
Because log(x) is the sum of the terms of the form log(1 + 2 −k) corresponding to those k for which the factor 1 + 2 −k was included in the product P, log(x) may be computed by simple addition, using a table of log(1 + 2 −k) for all k. Any base may be used for the logarithm table. [53]
The Henderson–Hasselbalch equation can be used to model these equilibria. It is important to maintain this pH of 7.4 to ensure enzymes are able to work optimally. [10] Life threatening Acidosis (a low blood pH resulting in nausea, headaches, and even coma, and convulsions) is due to a lack of functioning of enzymes at a low pH. [10]
At half-neutralization the ratio [A −] / [HA] = 1; since log(1) = 0, the pH at half-neutralization is numerically equal to pK a. Conversely, when pH = pK a, the concentration of HA is equal to the concentration of A −. The buffer region extends over the approximate range pK a ± 2. Buffering is weak outside the range pK a ± 1.
where log denotes a logarithm to base 10 or common logarithm, and K diss is a stepwise acid dissociation constant. For bases, the base association constant, pK b is used. For any given acid or base the two constants are related by pK a + pK b = pK w, so pK a can always be used in calculations.
The identities of logarithms can be used to approximate large numbers. Note that log b (a) + log b (c) = log b (ac), where a, b, and c are arbitrary constants. Suppose that one wants to approximate the 44th Mersenne prime, 2 32,582,657 −1. To get the base-10 logarithm, we would multiply 32,582,657 by log 10 (2), getting 9,808,357.09543 ...