enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cayley–Menger determinant - Wikipedia

    en.wikipedia.org/wiki/Cayley–Menger_determinant

    To reiterate, a simplex is an n-dimensional polytope and the convex hull of + points which do not lie in any () dimensional plane. [6] Therefore, a 2-simplex occurs when n = 2 {\displaystyle n=2} and the simplex results in a triangle.

  3. Simplex - Wikipedia

    en.wikipedia.org/wiki/Simplex

    The Hasse diagram of the face lattice of an n-simplex is isomorphic to the graph of the (n + 1)-hypercube's edges, with the hypercube's vertices mapping to each of the n-simplex's elements, including the entire simplex and the null polytope as the extreme points of the lattice (mapped to two opposite vertices on the hypercube). This fact may be ...

  4. Simplicial homology - Wikipedia

    en.wikipedia.org/wiki/Simplicial_homology

    Simplicial homology arose as a way to study topological spaces whose building blocks are n-simplices, the n-dimensional analogs of triangles. This includes a point (0-simplex), a line segment (1-simplex), a triangle (2-simplex) and a tetrahedron (3-simplex).

  5. Nelder–Mead method - Wikipedia

    en.wikipedia.org/wiki/Nelder–Mead_method

    The method uses the concept of a simplex, which is a special polytope of n + 1 vertices in n dimensions. Examples of simplices include a line segment in one-dimensional space, a triangle in two-dimensional space, a tetrahedron in three-dimensional space, and so forth.

  6. Betti number - Wikipedia

    en.wikipedia.org/wiki/Betti_number

    In algebraic topology, the Betti numbers are used to distinguish topological spaces based on the connectivity of n-dimensional simplicial complexes.For the most reasonable finite-dimensional spaces (such as compact manifolds, finite simplicial complexes or CW complexes), the sequence of Betti numbers is 0 from some point onward (Betti numbers vanish above the dimension of a space), and they ...

  7. Singular homology - Wikipedia

    en.wikipedia.org/wiki/Singular_homology

    The standard 2-simplex Δ 2 in R 3. A singular n-simplex in a topological space is a continuous function (also called a map) from the standard -simplex to , written :. This map need not be injective, and there can be non-equivalent singular simplices with the same image in .

  8. Triangulation (topology) - Wikipedia

    en.wikipedia.org/wiki/Triangulation_(topology)

    A 2-dimensional geometric simplicial complex with vertex V, link(V), and star(V) are highlighted in red and pink. As in the previous construction, by the topology induced by gluing, the closed sets in this space are the subsets that are closed in the subspace topology of every simplex Δ F {\displaystyle \Delta _{F}} in the complex.

  9. Barycentric subdivision - Wikipedia

    en.wikipedia.org/wiki/Barycentric_subdivision

    To define the subdivision, we will consider a simplex as a simplicial complex that contains only one simplex of maximal dimension, namely the simplex itself. The barycentric subdivision of a simplex can be defined inductively by its dimension. For points, i.e. simplices of dimension 0, the barycentric subdivision is defined as the point itself.