Search results
Results from the WOW.Com Content Network
Represent negative numbers as radix complements of their positive counterparts. Numbers less than / are considered positive; the rest are considered negative (and their magnitude can be obtained by taking the radix complement). This works best for even radices since the sign can be determined by looking at the first digit.
Take each digit of the number (371) in reverse order (173), multiplying them successively by the digits 1, 3, 2, 6, 4, 5, repeating with this sequence of multipliers as long as necessary (1, 3, 2, 6, 4, 5, 1, 3, 2, 6, 4, 5, ...), and adding the products (1×1 + 7×3 + 3×2 = 1 + 21 + 6 = 28). The original number is divisible by 7 if and only if ...
The simplest example given by Thimbleby of a possible problem when using an immediate-execution calculator is 4 × (−5). As a written formula the value of this is −20 because the minus sign is intended to indicate a negative number, rather than a subtraction, and this is the way that it would be interpreted by a formula calculator.
As x approaches zero from the left, y tends to negative infinity. In mathematics, division by zero, division where the divisor (denominator) is zero, is a unique and problematic special case. Using fraction notation, the general example can be written as , where is the dividend (numerator).
Division can be calculated with an abacus. [14] Logarithm tables can be used to divide two numbers, by subtracting the two numbers' logarithms, then looking up the antilogarithm of the result. Division can be calculated with a slide rule by aligning the divisor on the C scale with the dividend on the D scale. The quotient can be found on the D ...
The laws of arithmetic for negative numbers ensure that the common-sense idea of an opposite is reflected in arithmetic. For example, − (−3) = 3 because the opposite of an opposite is the original value. Negative numbers are usually written with a minus sign in front. For example, −3 represents a negative quantity with a magnitude of ...
Note that the ones' complement representation of a negative number can be obtained from the sign–magnitude representation merely by bitwise complementing the magnitude (inverting all the bits after the first). For example, the decimal number −125 with its sign–magnitude representation 11111101 can be represented in ones' complement form ...
A slide calculator, also known as an Addiator after the best-known brand, is a mechanical calculator capable of addition and subtraction, once made by Addiator Gesellschaft of Berlin, Germany. Variants of it were manufactured from 1920 until 1982. The devices were made obsolete by the electronic calculator.