enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Super star cluster - Wikipedia

    en.wikipedia.org/wiki/Super_star_cluster

    A super star cluster (SSC) is a very massive young open cluster that is thought to be the precursor of a globular cluster. [1] These clusters called "super" because they are relatively more luminous and contain more mass than other young star clusters. [ 2 ]

  3. Automatic clustering algorithms - Wikipedia

    en.wikipedia.org/wiki/Automatic_Clustering...

    BIRCH (balanced iterative reducing and clustering using hierarchies) is an algorithm used to perform connectivity-based clustering for large data-sets. [7] It is regarded as one of the fastest clustering algorithms, but it is limited because it requires the number of clusters as an input.

  4. List of cluster management software - Wikipedia

    en.wikipedia.org/wiki/List_of_cluster_management...

    Aspen Systems Inc - Aspen Cluster Management Environment (ACME) Borg, used at Google; Bright Cluster Manager, from Bright Computing; ClusterVisor, [2] from Advanced Clustering Technologies [3] CycleCloud, from Cycle Computing acquired By Microsoft; Komodor, Enterprise Kubernetes Management Platform; Dell/EMC - Remote Cluster Manager (RCM)

  5. Tanagra (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Tanagra_(machine_learning)

    Tanagra is a free suite of machine learning software for research and academic purposes developed by Ricco Rakotomalala at the Lumière University Lyon 2, France. [1] [2] Tanagra supports several standard data mining tasks such as: Visualization, Descriptive statistics, Instance selection, feature selection, feature construction, regression, factor analysis, clustering, classification and ...

  6. Single-linkage clustering - Wikipedia

    en.wikipedia.org/wiki/Single-linkage_clustering

    The naive algorithm for single linkage clustering is essentially the same as Kruskal's algorithm for minimum spanning trees. However, in single linkage clustering, the order in which clusters are formed is important, while for minimum spanning trees what matters is the set of pairs of points that form distances chosen by the algorithm.

  7. Determining the number of clusters in a data set - Wikipedia

    en.wikipedia.org/wiki/Determining_the_number_of...

    The average silhouette of the data is another useful criterion for assessing the natural number of clusters. The silhouette of a data instance is a measure of how closely it is matched to data within its cluster and how loosely it is matched to data of the neighboring cluster, i.e., the cluster whose average distance from the datum is lowest. [8]

  8. Carrot2 - Wikipedia

    en.wikipedia.org/wiki/Carrot2

    In 2003, a number of other search results clustering algorithms were added, ... version 2.0 was released with improved user interface and extended tool set.

  9. scikit-learn - Wikipedia

    en.wikipedia.org/wiki/Scikit-learn

    scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...