Search results
Results from the WOW.Com Content Network
In decimal numbers greater than 1 (such as 3.75), the fractional part of the number is expressed by the digits to the right of the separator (with a value of 0.75 in this case). 3.75 can be written either as an improper fraction, 375 / 100 , or as a mixed number, 3 + 75 / 100 .
A continued fraction is an expression of the form = + + + + + where the a n (n > 0) are the partial numerators, the b n are the partial denominators, and the leading term b 0 is called the integer part of the continued fraction.
The real numbers include the rational numbers, such as the integer −5 and the fraction 4 / 3. The rest of the real numbers are called irrational numbers. Some irrational numbers (as well as all the rationals) are the root of a polynomial with integer coefficients, such as the square root √2 = 1.414...; these are called algebraic numbers ...
A fixed-point representation of a fractional number is essentially an integer that is to be implicitly multiplied by a fixed scaling factor. For example, the value 1.23 can be stored in a variable as the integer value 1230 with implicit scaling factor of 1/1000 (meaning that the last 3 decimal digits are implicitly assumed to be a decimal fraction), and the value 1 230 000 can be represented ...
Every terminating decimal representation can be written as a decimal fraction, a fraction whose denominator is a power of 10 (e.g. 1.585 = 1585 / 1000 ); it may also be written as a ratio of the form k / 2 n ·5 m (e.g. 1.585 = 317 / 2 3 ·5 2 ).
(also written as 0. 9, 0.., or 0.(9)) is a repeating decimal that is an alternative way of writing the number 1. Following the standard rules for representing numbers in decimal notation, its value is the smallest number greater than or equal to every number in the sequence 0.9, 0.99, 0.999, .... It can be proved that this number is 1; that is,
It is the extension to non-integer numbers (decimal fractions) of the Hindu–Arabic numeral system. The way of denoting numbers in the decimal system is often referred to as decimal notation. [2] A decimal numeral (also often just decimal or, less correctly, decimal number), refers generally to the notation of a number in the decimal numeral ...
For example, in the decimal system (base 10), the numeral 4327 means (4×10 3) + (3×10 2) + (2×10 1) + (7×10 0), noting that 10 0 = 1. In general, if b is the base, one writes a number in the numeral system of base b by expressing it in the form a n b n + a n − 1 b n − 1 + a n − 2 b n − 2 + ... + a 0 b 0 and writing the enumerated ...