enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Exponential growth - Wikipedia

    en.wikipedia.org/wiki/Exponential_growth

    In the long run, exponential growth of any kind will overtake linear growth of any kind (that is the basis of the Malthusian catastrophe) as well as any polynomial growth, that is, for all α: = There is a whole hierarchy of conceivable growth rates that are slower than exponential and faster than linear (in the long run).

  3. Large numbers - Wikipedia

    en.wikipedia.org/wiki/Large_numbers

    Large numbers, far beyond those ... Stirling's formula provides a precise asymptotic expression for this rapid growth. ... Exponential growthGrowth of quantities ...

  4. Combinatorial explosion - Wikipedia

    en.wikipedia.org/wiki/Combinatorial_explosion

    Then 1! = 1, 2! = 2, 3! = 6, and 4! = 24. However, we quickly get to extremely large numbers, even for relatively small n. For example, 100! ≈ 9.332 621 54 × 10 157, a number so large that it cannot be displayed on most calculators, and vastly larger than the estimated number of fundamental particles in the observable universe. [9]

  5. Tetration - Wikipedia

    en.wikipedia.org/wiki/Tetration

    Because of the extremely fast growth of tetration, most values in the following table are too large to write in scientific notation. In these cases, iterated exponential notation is used to express them in base 10. The values containing a decimal point are approximate.

  6. Knuth's up-arrow notation - Wikipedia

    en.wikipedia.org/wiki/Knuth's_up-arrow_notation

    In mathematics, Knuth's up-arrow notation is a method of notation for very large integers, introduced by Donald Knuth in 1976. [1]In his 1947 paper, [2] R. L. Goodstein introduced the specific sequence of operations that are now called hyperoperations.

  7. e (mathematical constant) - Wikipedia

    en.wikipedia.org/wiki/E_(mathematical_constant)

    The number e is a mathematical constant approximately equal to 2.71828 that is the base of the natural logarithm and exponential function.It is sometimes called Euler's number, after the Swiss mathematician Leonhard Euler, though this can invite confusion with Euler numbers, or with Euler's constant, a different constant typically denoted .

  8. Factorial - Wikipedia

    en.wikipedia.org/wiki/Factorial

    Stirling's approximation provides an accurate approximation to the factorial of large numbers, showing that it grows more quickly than exponential growth. Legendre's formula describes the exponents of the prime numbers in a prime factorization of the factorials, and can be used to count the trailing zeros of the factorials.

  9. Doubling time - Wikipedia

    en.wikipedia.org/wiki/Doubling_time

    The doubling time is a characteristic unit (a natural unit of scale) for the exponential growth equation, and its converse for exponential decay is the half-life. As an example, Canada's net population growth was 2.7 percent in the year 2022, dividing 72 by 2.7 gives an approximate doubling time of about 27 years.