Search results
Results from the WOW.Com Content Network
If (,) (and therefore ()) is a Gaussian function, the wave packet is called a Gaussian wave packet. [12] For example, the solution to the one-dimensional free Schrödinger equation (with 2Δx, m, and ħ set equal to one) satisfying the initial condition (,) = / (+), representing a wave packet localized in space at the origin as a Gaussian ...
Solitary wave in a laboratory wave channel. In mathematics and physics, a soliton is a nonlinear, self-reinforcing, localized wave packet that is strongly stable, in that it preserves its shape while propagating freely, at constant velocity, and recovers it even after collisions with other such localized wave packets.
This wave packet becomes increasingly localized with the addition of many waves. The Fourier transform is a mathematical operation that separates a wave packet into its individual plane waves. The waves shown here are real for illustrative purposes only; in quantum mechanics the wave function is generally complex .
In quantum mechanics, where all particle momenta are associated with waves, it is the formation of such a wave packet which localizes the wave, and thus the particle, in space. In states where a quantum mechanical particle is bound, it must be localized as a wave packet, and the existence of the packet and its minimum size implies a spread and ...
Defining equation (physical chemistry) List of electromagnetism equations; List of equations in classical mechanics; List of equations in fluid mechanics; List of equations in gravitation; List of equations in nuclear and particle physics; List of equations in wave theory; List of photonics equations; List of relativistic equations
The Schrödinger equation determines how wave functions evolve over time, and a wave function behaves qualitatively like other waves, such as water waves or waves on a string, because the Schrödinger equation is mathematically a type of wave equation. This explains the name "wave function", and gives rise to wave–particle duality.
Collective matter waves are used to model phenomena in solid state physics; standing matter waves are used in molecular chemistry. Matter wave concepts are widely used in the study of materials where different wavelength and interaction characteristics of electrons, neutrons, and atoms are leveraged for advanced microscopy and diffraction ...
For example, the electron wave function for an unexcited hydrogen atom is a spherically symmetric function known as an s orbital . Analytic solutions of the Schrödinger equation are known for very few relatively simple model Hamiltonians including the quantum harmonic oscillator , the particle in a box , the dihydrogen cation , and the ...