enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Volumetric heat capacity - Wikipedia

    en.wikipedia.org/wiki/Volumetric_heat_capacity

    The volumetric heat capacity of a material is the heat capacity of a sample of the substance divided by the volume of the sample. It is the amount of energy that must be added, in the form of heat , to one unit of volume of the material in order to cause an increase of one unit in its temperature .

  3. Volume (thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Volume_(thermodynamics)

    The heat capacity is a function of the amount of heat added to a system. In the case of a constant-volume process, all the heat affects the internal energy of the system (i.e., there is no pV-work, and all the heat affects the temperature).

  4. Bacterial growth - Wikipedia

    en.wikipedia.org/wiki/Bacterial_growth

    The slope of this line is the specific growth rate of the organism, which is a measure of the number of divisions per cell per unit time. [5] The actual rate of this growth (i.e. the slope of the line in the figure) depends upon the growth conditions, which affect the frequency of cell division events and the probability of both daughter cells ...

  5. Heat equation - Wikipedia

    en.wikipedia.org/wiki/Heat_equation

    The steady-state heat equation for a volume that contains a heat source (the inhomogeneous case), is the Poisson's equation: − k ∇ 2 u = q {\displaystyle -k\nabla ^{2}u=q} where u is the temperature , k is the thermal conductivity and q is the rate of heat generation per unit volume.

  6. Relations between heat capacities - Wikipedia

    en.wikipedia.org/wiki/Relations_between_heat...

    The heat capacity depends on how the external variables of the system are changed when the heat is supplied. If the only external variable of the system is the volume, then we can write: d S = ( ∂ S ∂ T ) V d T + ( ∂ S ∂ V ) T d V {\displaystyle dS=\left({\frac {\partial S}{\partial T}}\right)_{V}dT+\left({\frac {\partial S}{\partial V ...

  7. Heat capacity ratio - Wikipedia

    en.wikipedia.org/wiki/Heat_capacity_ratio

    This cylinder is heated to a certain target temperature. Since the piston cannot move, the volume is constant. The temperature and pressure will rise. When the target temperature is reached, the heating is stopped. The amount of energy added equals C V ΔT, with ΔT representing the change in temperature.

  8. Rate of heat flow - Wikipedia

    en.wikipedia.org/wiki/Rate_of_heat_flow

    Heat is the flow of thermal energy driven by thermal non-equilibrium, so the term 'heat flow' is a redundancy (i.e. a pleonasm). Heat must not be confused with stored thermal energy, and moving a hot object from one place to another must not be called heat transfer. However, it is common to say ‘heat flow’ to mean ‘heat content’. [1]

  9. Microbial metabolism - Wikipedia

    en.wikipedia.org/wiki/Microbial_metabolism

    Microbial metabolism is the means by which a microbe obtains the energy and nutrients (e.g. carbon) it needs to live and reproduce.Microbes use many different types of metabolic strategies and species can often be differentiated from each other based on metabolic characteristics.