enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rate equation - Wikipedia

    en.wikipedia.org/wiki/Rate_equation

    Such collisions, which contribute the energy to the reactant, are necessarily second order. However according to the Lindemann mechanism the reaction consists of two steps: the bimolecular collision which is second order and the reaction of the energized molecule which is unimolecular and first order. The rate of the overall reaction depends on ...

  3. Rate-determining step - Wikipedia

    en.wikipedia.org/wiki/Rate-determining_step

    In fact, however, the observed reaction rate is second-order in NO 2 and zero-order in CO, [5] with rate equation r = k[NO 2] 2. This suggests that the rate is determined by a step in which two NO 2 molecules react, with the CO molecule entering at another, faster, step. A possible mechanism in two elementary steps that explains the rate ...

  4. Molecularity - Wikipedia

    en.wikipedia.org/wiki/Molecularity

    The kinetic order of any elementary reaction or reaction step is equal to its molecularity, and the rate equation of an elementary reaction can therefore be determined by inspection, from the molecularity. [1] The kinetic order of a complex (multistep) reaction, however, is not necessarily equal to the number of molecules involved.

  5. Reaction mechanism - Wikipedia

    en.wikipedia.org/wiki/Reaction_mechanism

    When determining the overall rate law for a reaction, the slowest step is the step that determines the reaction rate. Because the first step (in the above reaction) is the slowest step, it is the rate-determining step. Because it involves the collision of two NO 2 molecules, it is a bimolecular reaction with a rate which obeys the rate law = [()].

  6. SN1 reaction - Wikipedia

    en.wikipedia.org/wiki/SN1_reaction

    The Hughes-Ingold symbol of the mechanism expresses two properties—"S N" stands for "nucleophilic substitution", and the "1" says that the rate-determining step is unimolecular. [1] [2] Thus, the rate equation is often shown as having first-order dependence on the substrate and zero-order dependence on the nucleophile. This relationship holds ...

  7. Fick's laws of diffusion - Wikipedia

    en.wikipedia.org/wiki/Fick's_laws_of_diffusion

    The actual reaction order for a bimolecular unit reaction could be between 2 and ⁠2 + 1 / 3 ⁠, which makes sense because the diffusive collision time is squarely dependent on the distance between the two molecules. These new equations also avoid the singularity on the adsorption rate at time zero for the Langmuir-Schaefer equation.

  8. Reaction rate constant - Wikipedia

    en.wikipedia.org/wiki/Reaction_rate_constant

    where A and B are reactants C is a product a, b, and c are stoichiometric coefficients,. the reaction rate is often found to have the form: = [] [] Here ⁠ ⁠ is the reaction rate constant that depends on temperature, and [A] and [B] are the molar concentrations of substances A and B in moles per unit volume of solution, assuming the reaction is taking place throughout the volume of the ...

  9. Reactions on surfaces - Wikipedia

    en.wikipedia.org/wiki/Reactions_on_surfaces

    Reactions on surfaces are reactions in which at least one of the steps of the reaction mechanism is the adsorption of one or more reactants. The mechanisms for these reactions, and the rate equations are of extreme importance for heterogeneous catalysis .