enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Finite difference method - Wikipedia

    en.wikipedia.org/wiki/Finite_difference_method

    For example, consider the ordinary differential equation ′ = + The Euler method for solving this equation uses the finite difference quotient (+) ′ to approximate the differential equation by first substituting it for u'(x) then applying a little algebra (multiplying both sides by h, and then adding u(x) to both sides) to get (+) + (() +).

  3. LU decomposition - Wikipedia

    en.wikipedia.org/wiki/LU_decomposition

    In matrix inversion however, instead of vector b, we have matrix B, where B is an n-by-p matrix, so that we are trying to find a matrix X (also a n-by-p matrix): = =. We can use the same algorithm presented earlier to solve for each column of matrix X. Now suppose that B is the identity matrix of size n.

  4. Kronecker product - Wikipedia

    en.wikipedia.org/wiki/Kronecker_product

    If A is an m × n matrix and B is a p × q matrix, then the Kronecker product A ⊗ B is the pm × qn block matrix: = [], more explicitly: = []. Using / / and % to denote truncating integer division and remainder, respectively, and numbering the matrix elements starting from 0, one obtains

  5. Logical matrix - Wikipedia

    en.wikipedia.org/wiki/Logical_matrix

    A permutation matrix is a (0, 1)-matrix, all of whose columns and rows each have exactly one nonzero element.. A Costas array is a special case of a permutation matrix.; An incidence matrix in combinatorics and finite geometry has ones to indicate incidence between points (or vertices) and lines of a geometry, blocks of a block design, or edges of a graph.

  6. QR decomposition - Wikipedia

    en.wikipedia.org/wiki/QR_decomposition

    More generally, we can factor a complex m×n matrix A, with m ≥ n, as the product of an m×m unitary matrix Q and an m×n upper triangular matrix R.As the bottom (m−n) rows of an m×n upper triangular matrix consist entirely of zeroes, it is often useful to partition R, or both R and Q:

  7. Lagrange polynomial - Wikipedia

    en.wikipedia.org/wiki/Lagrange_polynomial

    By choosing a better basis, the Lagrange basis, = = (), we merely get the identity matrix, , which is its own inverse: the Lagrange basis automatically inverts the analog of the Vandermonde matrix. This construction is analogous to the Chinese remainder theorem .

  8. Smith normal form - Wikipedia

    en.wikipedia.org/wiki/Smith_normal_form

    Finally, adding appropriate multiples of row t, it can be achieved that all entries in column j t except for that at position (t,j t) are zero. This can be achieved by left-multiplication with an appropriate matrix. However, to make the matrix fully diagonal we need to eliminate nonzero entries on the row of position (t,j t) as well.

  9. Crank–Nicolson method - Wikipedia

    en.wikipedia.org/wiki/Crank–Nicolson_method

    The Crank–Nicolson stencil for a 1D problem. The Crank–Nicolson method is based on the trapezoidal rule, giving second-order convergence in time.For linear equations, the trapezoidal rule is equivalent to the implicit midpoint method [citation needed] —the simplest example of a Gauss–Legendre implicit Runge–Kutta method—which also has the property of being a geometric integrator.