Search results
Results from the WOW.Com Content Network
A linear matrix difference equation of the homogeneous (having no constant term) form + = has closed form solution = predicated on the vector of initial conditions on the individual variables that are stacked into the vector; is called the vector of initial conditions or simply the initial condition, and contains nk pieces of information, n being the dimension of the vector X and k = 1 being ...
For example, whenever dealing with a gas of particles, it is always assumed that its initial conditions are such that there is no correlation between the states of different particles (i.e. the speeds and locations of the different particles are completely random, up to the need to conform with the macrostate of the system). This is closely ...
The systems studied in chaos theory are deterministic. If the initial state were known exactly, then the future state of such a system could theoretically be predicted. However, in practice, knowledge about the future state is limited by the precision with which the initial state can be measured, and chaotic systems are characterized by a strong dependence on the initial condit
This is an example of sensitive dependence on initial conditions. Sensitivity to initial conditions means that each point in a chaotic system is arbitrarily closely approximated by other points that have significantly different future paths or trajectories. Thus, an arbitrarily small change or perturbation of the current trajectory may lead to ...
A plot of Lorenz' strange attractor for values ρ=28, σ = 10, β = 8/3. The butterfly effect or sensitive dependence on initial conditions is the property of a dynamical system that, starting from any of various arbitrarily close alternative initial conditions on the attractor, the iterated points will become arbitrarily spread out from each other.
Seth Lloyd proposed an alternative approach to time travel with closed timelike curves (CTCs), based on "post-selection" and path integrals. [21] Path integrals are a powerful tool in quantum mechanics that involve summing probabilities over all possible ways a system could evolve, including paths that do not strictly follow a single timeline. [22]
Sensitivity to Initial Conditions: A hallmark of chaotic systems, small differences in initial conditions can lead to vastly different trajectories. This is known as the butterfly effect. [3] Mixing: Over time, the phases of the system become uniformly distributed in phase space. [4]
A possible type of effect that would accomplish this is a buildup of vacuum fluctuations on the border of the region of spacetime where time travel would first become possible, causing the energy density to become high enough to destroy the system that would otherwise become a time machine.