Search results
Results from the WOW.Com Content Network
In 2009, weak gravitational lensing was used to extend the mass-X-ray-luminosity relation to older and smaller structures than was previously possible to improve measurements of distant galaxies. [29] As of 2013 the most distant gravitational lens galaxy, J1000+0221, had been found using NASA's Hubble Space Telescope.
While gravitational lensing preserves surface brightness, as dictated by Liouville's theorem, lensing does change the apparent solid angle of a source. The amount of magnification is given by the ratio of the image area to the source area. For a circularly symmetric lens, the magnification factor μ is given by
Solar gravitational lens point, on a logarithmic scale. A solar gravitational lens or solar gravity lens (SGL) is a theoretical method of using the Sun as a large lens with a physical effect called gravitational lensing. [1] It is considered one of the best methods to directly image habitable exoplanets.
Strong gravitational lensing is a gravitational lensing effect that is strong enough to produce multiple images, arcs, or Einstein rings. Generally, for strong lensing to occur, the projected lens mass density must be greater than the critical density, that is . For point-like background sources, there will be multiple images; for extended ...
Galaxy-galaxy lensing is a specific type of weak (and occasionally strong) gravitational lensing, in which the foreground object responsible for distorting the shapes of background galaxies is itself an individual field galaxy (as opposed to a galaxy cluster or the large-scale structure of the cosmos). Of the three typical mass regimes in weak ...
Gravitational lensing is an effect of gravitation, most commonly associated with General relativity. Subcategories. This category has the following 2 subcategories ...
Gravitational microlensing of an extrasolar planet. If the lensing object is a star with a planet orbiting it, this is an extreme example of a binary lens event. If the source crosses a caustic, the deviations from a standard event can be large even for low mass planets.
The key difference between an embedded lens and a traditional lens is that the mass of a standard lens contributes to the mean of the cosmological density, whereas that of an embedded lens does not. Consequently, the gravitational potential of an embedded lens has a finite range, i.e., there is no lensing effect outside of the void.