Search results
Results from the WOW.Com Content Network
In physics, relativistic mechanics refers to mechanics compatible with special relativity (SR) and general relativity (GR). It provides a non- quantum mechanical description of a system of particles, or of a fluid, in cases where the velocities of moving objects are comparable to the speed of light c. As a result, classical mechanics is ...
Total energy is the sum of rest energy = and relativistic kinetic energy: = = + Invariant mass is mass measured in a center-of-momentum frame. For bodies or systems with zero momentum, it simplifies to the mass–energy equation E 0 = m 0 c 2 {\displaystyle E_{0}=m_{0}{\textrm {c}}^{2}} , where total energy in this case is equal to rest energy.
Lorentz factor. {\displaystyle \gamma = {\frac {1} {\sqrt {1-\beta ^ {2}}}}} where and v is the relative velocity between two inertial frames. For two frames at rest, γ = 1, and increases with relative velocity between the two inertial frames. As the relative velocity approaches the speed of light, γ → ∞. Time dilation (different times t ...
t. e. In special relativity, four-momentum (also called momentum–energy or momenergy[1]) is the generalization of the classical three-dimensional momentum to four-dimensional spacetime. Momentum is a vector in three dimensions; similarly four-momentum is a four-vector in spacetime. The contravariant four-momentum of a particle with ...
The kinetic energy is equal to 1/2 the product of the mass and the square of the speed. In formula form: where is the mass and is the speed (magnitude of the velocity) of the body. In SI units, mass is measured in kilograms, speed in metres per second, and the resulting kinetic energy is in joules.
Lorentz factor γ as a function of fraction of given velocity and speed of light. Its initial value is 1 (when v = 0); and as velocity approaches the speed of light (v → c) γ increases without bound (γ → ∞). α (Lorentz factor inverse) as a function of velocity—a circular arc. In the table below, the left-hand column shows speeds as ...
Maxwell–Boltzmann. In physics (in particular in statistical mechanics), the Maxwell–Boltzmann distribution, or Maxwell (ian) distribution, is a particular probability distribution named after James Clerk Maxwell and Ludwig Boltzmann. It was first defined and used for describing particle speeds in idealized gases, where the particles move ...
The second equation says that the kinetic energy (seen from the origin) of a particle of unit mass moving with the expansion plus its (negative) gravitational potential energy (relative to the mass contained in the sphere of matter closer to the origin) is equal to a constant related to the curvature of the universe. In other words, the energy ...