Search results
Results from the WOW.Com Content Network
Total energy is the sum of rest energy = and relativistic kinetic energy: = = + Invariant mass is mass measured in a center-of-momentum frame. For bodies or systems with zero momentum, it simplifies to the mass–energy equation E 0 = m 0 c 2 {\displaystyle E_{0}=m_{0}c^{2}} , where total energy in this case is equal to rest energy.
For example, for a speed of 10 km/s (22,000 mph) the correction to the non-relativistic kinetic energy is 0.0417 J/kg (on a non-relativistic kinetic energy of 50 MJ/kg) and for a speed of 100 km/s it is 417 J/kg (on a non-relativistic kinetic energy of 5 GJ/kg). The relativistic relation between kinetic energy and momentum is given by
The kinetic energy, , is defined as = =, ... The relativistic energy–momentum equation holds for all particles, even for massless particles for which m 0 = 0. In ...
This is the formula for the relativistic doppler shift where the difference in velocity between the emitter and observer is not on the x-axis. There are two special cases of this equation. The first is the case where the velocity between the emitter and observer is along the x-axis. In that case θ = 0, and cos θ = 1, which gives:
The relativistic mass is the sum total quantity of energy in a body or system (divided by c 2).Thus, the mass in the formula = is the relativistic mass. For a particle of non-zero rest mass m moving at a speed relative to the observer, one finds =.
Relativistic kinetic energy: The relativistic kinetic energy relation takes the slightly modified form: = = As is a function of , the non-relativistic limit gives / =, as expected from Newtonian considerations.
These two types of relativistic particles are remarked as massless and massive, respectively. In experiments, massive particles are relativistic when their kinetic energy is comparable to or greater than the energy = corresponding to their rest mass. In other words, a massive particle is relativistic when its total mass-energy is at least twice ...
This implies the kinetic energy, in both Newtonian mechanics and relativity, is 'frame dependent', so that the amount of relativistic energy that an object is measured to have depends on the observer. The relativistic mass of an object is given by the relativistic energy divided by c 2. [10]