Search results
Results from the WOW.Com Content Network
The transfer function of a two-port electronic circuit, such as an amplifier, might be a two-dimensional graph of the scalar voltage at the output as a function of the scalar voltage applied to the input; the transfer function of an electromechanical actuator might be the mechanical displacement of the movable arm as a function of electric ...
Assuming zero initial conditions () = and a single-input single-output (SISO) system, the transfer function is defined as the ratio of output and input () = / (). For a multiple-input multiple-output (MIMO) system , however, this ratio is not defined.
The closed-loop transfer function is measured at the output. The output signal can be calculated from the closed-loop transfer function and the input signal. Signals may be waveforms, images, or other types of data streams. An example of a closed-loop block diagram, from which a transfer function may be computed, is shown below:
The state-transition matrix is used to find the solution to a general state-space representation of a linear system in the following form ˙ = () + (), =, where () are the states of the system, () is the input signal, () and () are matrix functions, and is the initial condition at .
Transfer constants are low-frequency ratios of the output variable to input variable under different open- and short-circuited active elements. In general, a transfer function (which can characterize gain, admittance, impedance, trans-impedance, etc., based on the choice of the input and output variables) can be written as:
For a system described by the transfer function = +, the final value theorem appears to predict the final value of the impulse response to be 0 and the final value of the step response to be 1. However, neither time-domain limit exists, and so the final value theorem predictions are not valid.
The most general causal LTI transfer function can be uniquely factored into a series of an all-pass and a minimum phase system. The system function is then the product of the two parts, and in the time domain the response of the system is the convolution of the two part responses.
The impulse response of a linear transformation is the image of Dirac's delta function under the transformation, analogous to the fundamental solution of a partial differential operator. It is usually easier to analyze systems using transfer functions as opposed to impulse responses. The transfer function is the Laplace transform of the impulse ...