enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Orbit of Mars - Wikipedia

    en.wikipedia.org/wiki/Orbit_of_Mars

    Mars has an orbit with a semimajor axis of 1.524 astronomical units (228 million km) (12.673 light minutes), and an eccentricity of 0.0934. [1][2] The planet orbits the Sun in 687 days [3] and travels 9.55 AU in doing so, [4] making the average orbital speed 24 km/s. The eccentricity is greater than that of every other planet except Mercury ...

  3. Timekeeping on Mars - Wikipedia

    en.wikipedia.org/wiki/Timekeeping_on_Mars

    Definition of year and seasons. The length of time for Mars to complete one orbit around the Sun in respect to the stars, its sidereal year, is about 686.98 Earth solar days (≈ 1.88 Earth years), or 668.5991 sols. Because of the eccentricity of Mars' orbit, the seasons are not of equal length.

  4. Rotation period (astronomy) - Wikipedia

    en.wikipedia.org/wiki/Rotation_period_(astronomy)

    Rotation period (astronomy) In astronomy, the rotation period or spin period[1] of a celestial object (e.g., star, planet, moon, asteroid) has two definitions. The first one corresponds to the sidereal rotation period (or sidereal day), i.e., the time that the object takes to complete a full rotation around its axis relative to the background ...

  5. Mars sol - Wikipedia

    en.wikipedia.org/wiki/Mars_sol

    The average duration of the day-night cycle on Mars — i.e., a Martian day — is 24 hours, 39 minutes and 35.244 seconds, [3] equivalent to 1.02749125 Earth days. [4] The sidereal rotational period of Mars—its rotation compared to the fixed stars—is 24 hours, 37 minutes and 22.66 seconds. [4]

  6. Astronomy on Mars - Wikipedia

    en.wikipedia.org/wiki/Astronomy_on_Mars

    As on Earth, there is a second form of precession: the point of perihelion in Mars's orbit changes slowly, causing the anomalistic year to differ from the sidereal year. However, on Mars, this cycle is 43,000 Martian years (81,000 Earth years) rather than 112,000 years as on Earth.

  7. Mars - Wikipedia

    en.wikipedia.org/wiki/Mars

    At one point, 1.35 million Earth years ago, Mars had an eccentricity of roughly 0.002, much less than that of Earth today. [188] Mars's cycle of eccentricity is 96,000 Earth years compared to Earth's cycle of 100,000 years. [189] Mars has its closest approach to Earth in a synodic period of 779.94 days.

  8. Sidereal time - Wikipedia

    en.wikipedia.org/wiki/Sidereal_time

    A year has about 365.24 solar days but 366.24 sidereal days. Therefore, there is one fewer solar day per year than there are sidereal days, similar to an observation of the coin rotation paradox. [5] This makes a sidereal day approximately ⁠ 365.24 / 366.24 ⁠ times the length of the 24-hour solar day.

  9. Historical models of the Solar System - Wikipedia

    en.wikipedia.org/wiki/Historical_models_of_the...

    [28] [29] The complicated pattern of these movements is bound to be repeated again after a period called a 'complete' or 'perfect' year. [30] So, Plato arranged these celestial orbs in the order (outwards from the center): Moon, Sun, Venus, Mercury, Mars, Jupiter, Saturn, and fixed stars, with the fixed stars located on the celestial sphere ...