enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cellular respiration - Wikipedia

    en.wikipedia.org/wiki/Cellular_respiration

    Cellular respiration is the process by which biological fuels are oxidised in the presence of an inorganic electron acceptor, such as oxygen, to produce large amounts of energy and drive the bulk production of ATP. Anaerobic respiration is used by microorganisms, either bacteria or archaea, in which neither oxygen (aerobic respiration) nor ...

  3. Bioenergetic systems - Wikipedia

    en.wikipedia.org/wiki/Bioenergetic_systems

    Bioenergetic systems. Simplified outline of the catabolism of carbohydrates, fatty acids, and amino acids in the synthesis of ATP. Bioenergetic systems are metabolic processes that relate to the flow of energy in living organisms. Those processes convert energy into adenosine triphosphate (ATP), which is the form suitable for muscular activity.

  4. Bioenergetics - Wikipedia

    en.wikipedia.org/wiki/Bioenergetics

    Bioenergetics is a field in biochemistry and cell biology that concerns energy flow through living systems. [1] This is an active area of biological research that includes the study of the transformation of energy in living organisms and the study of thousands of different cellular processes such as cellular respiration and the many other metabolic and enzymatic processes that lead to ...

  5. Anaerobic respiration - Wikipedia

    en.wikipedia.org/wiki/Anaerobic_respiration

    Anaerobic cellular respiration and fermentation generate ATP in very different ways, and the terms should not be treated as synonyms. Cellular respiration (both aerobic and anaerobic) uses highly reduced chemical compounds such as NADH and FADH 2 (for example produced during glycolysis and the citric acid cycle) to establish an electrochemical gradient (often a proton gradient) across a membrane.

  6. Ketogenesis - Wikipedia

    en.wikipedia.org/wiki/Ketogenesis

    Ketogenesis is the biochemical process through which organisms produce ketone bodies by breaking down fatty acids and ketogenic amino acids. [1][2] The process supplies energy to certain organs, particularly the brain, heart and skeletal muscle, under specific scenarios including fasting, caloric restriction, sleep, [3] or others.

  7. Glycolysis - Wikipedia

    en.wikipedia.org/wiki/Glycolysis

    Glycolysis is the metabolic pathway that converts glucose (C6H12O6) into pyruvate and, in most organisms, occurs in the liquid part of cells (the cytosol). The free energy released in this process is used to form the high-energy molecules adenosine triphosphate (ATP) and reduced nicotinamide adenine dinucleotide (NADH). [1]

  8. Cellular waste product - Wikipedia

    en.wikipedia.org/wiki/Cellular_waste_product

    Cellular waste products are formed as a by-product of cellular respiration, a series of processes and reactions that generate energy for the cell, in the form of ATP. One example of cellular respiration creating cellular waste products are aerobic respiration and anaerobic respiration. Each pathway generates different waste products.

  9. Carbohydrate metabolism - Wikipedia

    en.wikipedia.org/wiki/Carbohydrate_metabolism

    Carbohydrate metabolism is the whole of the biochemical processes responsible for the metabolic formation, breakdown, and interconversion of carbohydrates in living organisms. Carbohydrates are central to many essential metabolic pathways. [1] Plants synthesize carbohydrates from carbon dioxide and water through photosynthesis, allowing them to ...