enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rank–nullity theorem - Wikipedia

    en.wikipedia.org/wiki/Ranknullity_theorem

    Ranknullity theorem. Ranknullity theorem. The ranknullity theorem is a theorem in linear algebra, which asserts: the number of columns of a matrix M is the sum of the rank of M and the nullity of M; and. the dimension of the domain of a linear transformation f is the sum of the rank of f (the dimension of the image of f) and the ...

  3. Linear map - Wikipedia

    en.wikipedia.org/wiki/Linear_map

    Linear map. In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping between two vector spaces that preserves the operations of vector addition and scalar multiplication.

  4. Rank (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Rank_(linear_algebra)

    In linear algebra, the rank of a matrix A is the dimension of the vector space generated (or spanned) by its columns. [1][2][3] This corresponds to the maximal number of linearly independent columns of A. This, in turn, is identical to the dimension of the vector space spanned by its rows. [4] Rank is thus a measure of the "nondegenerateness ...

  5. Kernel (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Kernel_(linear_algebra)

    Kernel (linear algebra) In mathematics, the kernel of a linear map, also known as the null space or nullspace, is the part of the domain which is mapped to the zero vector of the co-domain; the kernel is always a linear subspace of the domain. [1] That is, given a linear map L : V → W between two vector spaces V and W, the kernel of L is the ...

  6. Matrix similarity - Wikipedia

    en.wikipedia.org/wiki/Matrix_similarity

    Matrix similarity. In linear algebra, two n -by- n matrices A and B are called similar if there exists an invertible n -by- n matrix P such that Similar matrices represent the same linear map under two (possibly) different bases, with P being the change-of-basis matrix. [1][2] A transformation A ↦ P−1AP is called a similarity transformation ...

  7. Outline of linear algebra - Wikipedia

    en.wikipedia.org/wiki/Outline_of_linear_algebra

    Dimension theorem for vector spaces. Hamel dimension; Examples of vector spaces; Linear map. Shear mapping or Galilean transformation; Squeeze mapping or Lorentz transformation; Linear subspace. Row and column spaces; Column space; Row space; Cyclic subspace; Null space, nullity; Ranknullity theorem; Nullity theorem; Dual space. Linear ...

  8. Row and column spaces - Wikipedia

    en.wikipedia.org/wiki/Row_and_column_spaces

    If V and W are vector spaces, then the kernel of a linear transformation T: V → W is the set of vectors v ∈ V for which T(v) = 0. The kernel of a linear transformation is analogous to the null space of a matrix. If V is an inner product space, then the orthogonal complement to the kernel can be thought of as a generalization of the row space.

  9. Jordan normal form - Wikipedia

    en.wikipedia.org/wiki/Jordan_normal_form

    By the rank-nullity theorem, dim(ker(A−λI))=n-r, so t=n-r-s, and so the number of vectors in the potential basis is equal to n. To show linear independence, suppose some linear combination of the vectors is 0. Applying A − λI, we get some linear combination of p i, with the q i becoming lead vectors among the p i.