Search results
Results from the WOW.Com Content Network
For example, the water phase diagram has a triple point corresponding to the single temperature and pressure at which solid, liquid, and gaseous water can coexist in a stable equilibrium (273.16 K and a partial vapor pressure of 611.657 Pa).
It is usually a combination of a Bode magnitude plot, expressing the magnitude (usually in decibels) of the frequency response, and a Bode phase plot, expressing the phase shift. As originally conceived by Hendrik Wade Bode in the 1930s, the plot is an asymptotic approximation of the frequency response, using straight line segments .
In water, the critical point occurs at around 647 K (374 °C or 705 °F) and 22.064 MPa. An unusual feature of the water phase diagram is that the solid–liquid phase line (illustrated by the dotted green line) has a negative slope. For most substances, the slope is positive as exemplified by the dark green line.
Amorphous solid: A solid in which there is no far-range order of the positions of the atoms. Crystalline solid: A solid in which atoms, molecules, or ions are packed in regular order. Quasicrystal: A solid in which the positions of the atoms have long-range order, but this is not in a repeating pattern.
Under the Ehrenfest classification scheme, there could in principle be third, fourth, and higher-order phase transitions. For example, the Gross–Witten–Wadia phase transition in 2-d lattice quantum chromodynamics is a third-order phase transition, and the Tracy–Widom distribution can be interpreted as a third-order transition.
English: Phase diagram of water as a log-lin chart with pressure from 1 Pa to 1 TPa and temperature from 0 K to 660 K, compiled from data in and . Note that the phases of Ice X and XI (hexagonal) differ from the diagram in [3] .
Color of water – Water color in different conditions; Water vapor – Gaseous phase of water Vapour pressure of water – Pressure exerted by molecules of water vapor in gaseous form; Steam – Water in the gas phase; Ice – Frozen water: the solid state of water; Optical properties of water and ice
To put this in perspective: the lowest excitation vibrational energy in water is the bending mode (about 1600 cm −1). Thus, at room temperature less than 0.07 percent of all the molecules of a given amount of water will vibrate faster than at absolute zero. As stated above, rotation hardly influences the molecular geometry.