enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Thermodynamic versus kinetic reaction control - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_versus...

    The kinetic and thermodynamic deprotonation of 2-methylcyclohexanone. If a much weaker base is used, the deprotonation will be incomplete, and there will be an equilibrium between reactants and products. Thermodynamic control is obtained, however the reaction remains incomplete unless the product enolate is trapped, as in the example below.

  3. Chemical stability - Wikipedia

    en.wikipedia.org/wiki/Chemical_stability

    In chemistry, chemical stability is the thermodynamic stability of a chemical system, in particular a chemical compound or a polymer. [1] Colloquially, it may instead refer to kinetic persistence, the shelf-life of a metastable substance or system; that is, the timescale over which it begins to degrade.

  4. Energy profile (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Energy_profile_(chemistry)

    A reaction coordinate diagram can also be used to qualitatively illustrate kinetic and thermodynamic control in a reaction. Figure 9:Kinetic and Thermodynamic Control: A. Product B is both the kinetic and thermodynamic product and B. Product A is the kinetic product while B is the thermodynamic product. [4]

  5. Metastability - Wikipedia

    en.wikipedia.org/wiki/Metastability

    Non-equilibrium thermodynamics is a branch of physics that studies the dynamics of statistical ensembles of molecules via unstable states. Being "stuck" in a thermodynamic trough without being at the lowest energy state is known as having kinetic stability or being kinetically persistent.

  6. Pourbaix diagram - Wikipedia

    en.wikipedia.org/wiki/Pourbaix_diagram

    Pourbaix diagram of iron. [1] The Y axis corresponds to voltage potential. In electrochemistry, and more generally in solution chemistry, a Pourbaix diagram, also known as a potential/pH diagram, E H –pH diagram or a pE/pH diagram, is a plot of possible thermodynamically stable phases (i.e., at chemical equilibrium) of an aqueous electrochemical system.

  7. Transition state theory - Wikipedia

    en.wikipedia.org/wiki/Transition_state_theory

    where is the dissociation energy at absolute zero, k B is the Boltzmann constant, h is the Planck constant, T is thermodynamic temperature, is vibrational frequency of the bond. This expression is very important since it is the first time that the factor k B T / h , which is a critical component of TST, has appeared in a rate equation.

  8. Ellingham diagram - Wikipedia

    en.wikipedia.org/wiki/Ellingham_diagram

    An Ellingham diagram is a graph showing the temperature dependence of the stability of compounds. This analysis is usually used to evaluate the ease of reduction of metal oxides and sulfides . These diagrams were first constructed by Harold Ellingham in 1944. [ 1 ]

  9. Thermodynamic equilibrium - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_equilibrium

    Classical thermodynamics deals with states of dynamic equilibrium.The state of a system at thermodynamic equilibrium is the one for which some thermodynamic potential is minimized (in the absence of an applied voltage), [2] or for which the entropy (S) is maximized, for specified conditions.