enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Summation by parts - Wikipedia

    en.wikipedia.org/wiki/Summation_by_parts

    The formula for an integration by parts is () ′ = [() ()] ′ (). Beside the boundary conditions , we notice that the first integral contains two multiplied functions, one which is integrated in the final integral ( g ′ {\displaystyle g'} becomes g {\displaystyle g} ) and one which is differentiated ( f {\displaystyle f} becomes f ...

  3. 1 + 2 + 3 + 4 + ⋯ - ⋯ - Wikipedia

    en.wikipedia.org/wiki/1_%2B_2_%2B_3_%2B_4_%2B_%E...

    Ramanujan summation is a method to isolate the constant term in the Euler–Maclaurin formula for the partial sums of a series. For a function f , the classical Ramanujan sum of the series ∑ k = 1 ∞ f ( k ) {\displaystyle \textstyle \sum _{k=1}^{\infty }f(k)} is defined as

  4. Abel's summation formula - Wikipedia

    en.wikipedia.org/wiki/Abel's_summation_formula

    Abel's summation formula can be generalized to the case where is only assumed to be continuous if the integral is interpreted as a Riemann–Stieltjes integral: ∑ x < n ≤ y a n ϕ ( n ) = A ( y ) ϕ ( y ) − A ( x ) ϕ ( x ) − ∫ x y A ( u ) d ϕ ( u ) . {\displaystyle \sum _{x<n\leq y}a_{n}\phi (n)=A(y)\phi (y)-A(x)\phi (x)-\int _{x ...

  5. Geometric series - Wikipedia

    en.wikipedia.org/wiki/Geometric_series

    The partial sum of the first + terms of a geometric series, up to and including the term, = + + + = =, is given by the closed form = {(+) = (+) where is the common ratio. The case r = 1 {\displaystyle r=1} is merely a simple addition, a case of an arithmetic series .

  6. List of mathematical series - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_series

    An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.

  7. Harmonic series (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Harmonic_series_(mathematics)

    This shows that the partial sums of the harmonic series differ from the integral by an amount that is bounded above and below by the unit area of the first rectangle: + < = < + Generalizing this argument, any infinite sum of values of a monotone decreasing positive function of n {\displaystyle n} (like the harmonic series) has partial sums that ...

  8. Telescoping series - Wikipedia

    en.wikipedia.org/wiki/Telescoping_series

    An early statement of the formula for the sum or partial sums of a telescoping series can be ... Every series is a telescoping series of its own partial sums. [5 ...

  9. Convergent series - Wikipedia

    en.wikipedia.org/wiki/Convergent_series

    In mathematics, a series is the sum of the terms of an infinite sequence of numbers. More precisely, an infinite sequence (,,, …) defines a series S that is denoted = + + + = =. The n th partial sum S n is the sum of the first n terms of the sequence; that is,