Search results
Results from the WOW.Com Content Network
Physical weathering, also called mechanical weathering or disaggregation, is the class of processes that causes the disintegration of rocks without chemical change. Physical weathering involves the breakdown of rocks into smaller fragments through processes such as expansion and contraction, mainly due to temperature changes.
Chemical weathering of feldspars happens by hydrolysis and produces clay minerals, including illite, smectite, and kaolinite. Hydrolysis of feldspars begins with the feldspar dissolving in water, which happens best in acidic or basic solutions and less well in neutral ones. [ 30 ]
Spheroidal weathering of a dolerite dyke, Pilbara, Western Australia. Spheroidal weathering is a form of chemical weathering that affects jointed bedrock and results in the formation of concentric or spherical layers of highly decayed rock within weathered bedrock that is known as saprolite.
The rate of weathering is sensitive to factors that change how much land is exposed. These factors include sea level , topography , lithology , and vegetation changes. [ 4 ] Furthermore, these geomorphic and chemical changes have worked in tandem with solar forcing, whether due to orbital changes or stellar evolution, to determine the global ...
Chemical weathering of igneous minerals leads to the formation of secondary minerals, which constitute the weathering products of the parent minerals. Secondary weathering minerals of igneous rocks can be classified mainly as iron oxides, salts, and phyllosilicates. The chemistry of the secondary minerals is controlled in part by the chemistry ...
Frost weathering is a collective term for several mechanical weathering processes induced by stresses created by the freezing of water into ice. The term serves as an ...
Diagenesis (/ ˌ d aɪ. ə ˈ dʒ ɛ n ə s ɪ s /) is the process of physical and chemical changes in sediments first caused by water-rock interactions, microbial activity, and compaction after their deposition. Increased pressure and temperature only start to play a role as sediments become buried much deeper in the Earth's crust. [1]
Many explanations have been proposed for honeycomb and other cavernous weathering. These explanations include marine abrasion; wind corrosion; mechanical weathering resulting from short-term temperature variations; chemical weathering of the interior of the rock (core-softening) under a protective crust (case-hardening) followed by mechanical removal of the softened material; biogeochemical ...