Search results
Results from the WOW.Com Content Network
The two-tailed p-value, which considers deviations favoring either heads or tails, may instead be calculated. As the binomial distribution is symmetrical for a fair coin, the two-sided p-value is simply twice the above calculated single-sided p-value: the two-sided p-value is 0.115. In the above example:
Thus an approximate p-value can be obtained from a normal probability table. For example, if z = 2.2 is observed and a two-sided p-value is desired to test the null hypothesis that =, the p-value is 2 Φ(−2.2) = 0.028, where Φ is the standard normal cumulative distribution function.
Note: Fisher's G-test in the GeneCycle Package of the R programming language (fisher.g.test) does not implement the G-test as described in this article, but rather Fisher's exact test of Gaussian white-noise in a time series. [10] Another R implementation to compute the G statistic and corresponding p-values is provided by the R package entropy.
The p-value was introduced by Karl Pearson [6] in the Pearson's chi-squared test, where he defined P (original notation) as the probability that the statistic would be at or above a given level. This is a one-tailed definition, and the chi-squared distribution is asymmetric, only assuming positive or zero values, and has only one tail, the ...
Under Fisher's method, two small p-values P 1 and P 2 combine to form a smaller p-value.The darkest boundary defines the region where the meta-analysis p-value is below 0.05.. For example, if both p-values are around 0.10, or if one is around 0.04 and one is around 0.25, the meta-analysis p-value is around 0
Most of the tests in DIEHARD return a p-value, which should be uniform on [0,1) if the input file contains truly independent random bits. Those p -values are obtained by p = F ( X ), where F is the assumed distribution of the sample random variable X – often normal.
In statistics, a generalized p-value is an extended version of the classical p-value, which except in a limited number of applications, provides only approximate solutions. Conventional statistical methods do not provide exact solutions to many statistical problems, such as those arising in mixed models and MANOVA , especially when the problem ...
The t-test p-value for the difference in means, and the regression p-value for the slope, are both 0.00805. The methods give identical results. This example shows that, for the special case of a simple linear regression where there is a single x-variable that has values 0 and 1, the t-test gives the same results as the linear regression. The ...